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ABSTRACT
The complexity of patients with spine pathology and high rates of complications has driven extensive research directed 

toward optimizing outcomes and reducing complications. Traditional statistical analysis has been limited both in validity and 
in the number of predictor variables considered. Over the past decade, artificial intelligence and machine learning have taken 
center stage as the possible solution to creating more accurate and applicable patient-centered predictive models in spine surgery. 
This review discusses the current published machine learning applications on preoperative optimization, risk stratification, and 
predictive modeling for the cervical, lumbar, and adult spinal deformity populations.
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INTRODUCTION

The development of predictive models is not a novel 
concept in spine surgery. For decades, surgeons have 
relied on various statistical analyses to identify risk 
factors for complications with the hope of creating a 
valid model. A popular technique is the use of multivari-
ate logistic regression (LR), which produces odds ratios 
for independent variables on the outcomes of interest. 
The advantage of such analysis includes the relative 
ease of interpretation and application. However, an 
important limitation of predictive models is the limited 
number of predictive variables included. Furthermore, 
these traditional analyses are static in nature, assume a 
“linear” relationship between the input and output vari-
ables, and may have minimal applicability for address-
ing the intricacies of patient-specific needs as new data 
are introduced.

Over the past decade, health care providers have 
gained access to an immense amount of patient infor-
mation through the digitation of electronic medical 
records. As a result, artificial intelligence (AI) and 
machine learning (ML) have taken center stage as the 
potential solution for implementing more accurate and 
generalizable predictive models. The major reasons for 
the increasing attraction toward AI and ML include the 
potential to process large amounts of data quickly, create 
models that adapt to new data, and understand complex, 
nonlinear relationships that conventional regression 
models might fail to comprehend. Spine studies are 
already showing promise in the ability of ML methods 

to provide improved preoperative risk stratification 
and diagnostics as well as leverage imaging data for 
better clinical prognostication.1–3 The purpose of this 
review is to highlight the current applications of ML 
in spine surgery, compare the performance of common 
ML models, and explore the potential of ML in future 
studies.

WHAT IS ARTIFICIAL INTELLIGENCE 
AND MACHINE LEARNING?

AI is the broader concept of applying systems to 
simulate human learning and thinking. One of the main 
applications of AI is ML, which utilizes various compu-
tational techniques to continuously learn and self-adjust 
from past data in order to determine mathematical rela-
tionships inherent in the data. The majority of prior 
outcomes research in spine have involved statistical 
analyses to characterize relationships between indepen-
dent and dependent variables. By doing so, the focus of 
these statistical analyses has been to identify the param-
eters of a model and understand how each impacts the 
prediction. Although these analyses are valuable and 
often offer the researcher an ease of interpretability, 
they are static in nature and are often subject to selec-
tion bias and limited external validity. In contrast, the 
focus of ML is less about the parameters of a model and 
more about the prediction. This often leads to “black 
box” algorithms, which may be difficult to concep-
tualize. However, ML has the potential to process an 
inordinate amount of data, learn and adapt to varying 
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patient populations, and provide more powerful predic-
tive capabilities.

In general, there are 3 main paradigms within ML: 
supervised learning, unsupervised learning, and rein-
forcement learning. Supervised learning is a more 
“hands-on” approach than other forms of ML. This 
approach relies on labeled datasets to “supervise” algo-
rithms to classify and predict outcomes accurately. 
Tasks suited for this style of learning involve classifi-
cation and regression. One potential drawback is that it 
may be time-consuming to train the data as it requires 
labels for each input and output, which may be exten-
sive for large datasets. Common models used in super-
vised learning include decision trees (DTs), support 
vector machines (SVMs), and LR.

The main difference between supervised learning 
and unsupervised learning is the use of labeled datasets. 
Unsupervised learning trains algorithms based on unla-
beled data without any guidance. This style of learning 
attempts to discover the inherent patterns of unlabeled 
data on its own. Tasks suited for this approach involve 
associations and clustering. Unsupervised learning may 
be used to cluster large unlabeled datasets based on 
their similarities and/or differences as well as process 
anomalies in visual or medical imaging data.

Similar to unsupervised learning, reinforce-
ment learning does not involve external supervision. 
However, the goal of this approach involves a “trial-
and-error” method of exploring new, unlabeled data to 
minimize cost or maximize reward parameters without 
any guidance. Over time, these algorithms will continue 
to explore new data and develop their own rules to max-
imize an outcome. Artificial neural networks (ANNs) 
often serve as the learning component in this approach.

As with any statistical analysis, it is important to 
make the distinction between correlation and causation 
in ML. A correlation is an association between vari-
ables. For instance, variable A may be associated with 
variable B. It is possible that variable A caused vari-
able B or vice versa. However, there could be a third 
factor, variable C, which changes or confounds both 
variables A and B independently. Only after con-
trolling for all confounders and random chance can it 
be assumed that a causal relationship exists between 
variables A and B. Although ML enables users to iden-
tify nuanced, complex relationships, these relationships 
are still correlations, not causations. For instance, ML 
may be trained on hundreds of x-ray images to detect 
a spinal deformity pattern; however, changes in pixel 
gradients or variances in patient positioning in x-ray 
images may introduce new variables that can influence 

the model. The assumption made with ML is that with 
a large enough training dataset, the ML will be able to 
encode all possible relationships into the model. One 
of the key factors behind the incremental gains in the 
accuracy of ML is the growing availability of data and 
stronger computer processing power. However, there 
may be practical limits to this. Currently, AI researchers 
argue for integrating a causal understanding into ML, 
which may require fewer training samples; however, the 
implementation of “causal ML” remains at the concep-
tual level.4,5

COMMON MACHINE LEARNING 
MODELS USED IN SPINE RESEARCH

DT and random forests (RFs) are examples of super-
vised learning, which uses a set of inputs and outputs to 
predict classification and regression problems such as 
readmission rates, patient-reported outcomes, and sur-
gical complications. In short, a DT iteratively asks ques-
tions to partition data to reach the eventual outcome. An 
RF is an ensemble of many DTs. In comparison with a 
single DT, RF reduces overfitting and ultimately may 
improve accuracy.

SVMs are supervised learning algorithms that use 
decision boundaries or hyperplanes to help categorize 
2 classes of data points and maximize the “distance” 
between the data of those 2 classes. SVMs may be 
useful in classifying images and conducting image seg-
mentation analyses.

ANN is a commonly used ML tool that emulates the 
framework of the nervous system. ANN involves multi-
ple layers with at least 1 hidden layer between the input 
and output. These hidden layers are interconnected by 
weighted linkages.

Convolutional neural networks (CNNs) are a subset 
of ANN that leverage a mathematical operation called 
convolution and are best suited for image, speech, and 
audio signal inputs. In short, CNNs take an input picture, 
assign relevance (eg, weights) to different aspects in the 
image through multiple layers, and distinguish them.

APPLICATIONS OF MACHINE LEARNING 
IN THE CERVICAL SPINE

A number of studies have sought to develop ML algo-
rithms to predict outcomes and complications after cer-
vical spine surgery.6–8 One of the earliest applications 
of ML in cervical spine outcomes was introduced by 
Arvind et al in 2018, who examined more than 20,000 
patients who underwent anterior cervical discectomy 
and fusion (ACDF) from the National Surgical Quality 
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Improvement Program (NSQIP) database and com-
pared the performance of various ML models (ANN, 
LR, SVM, and RF) to predict surgical complications.9 
These authors found that ANN and LR outperformed 
the American Society of Anesthesiologists (ASA) 
physical status classification for every complication 
(area under curve [AUC] for cardiac, venous thrombo-
embolism, wound complication, and mortality: ANN 
0.772, 0.656, 0.518, 0.979; LR 0.759, 0.639, 0.501, 
0.974; ASA 0.566, 0.397, 0.455, 0.346). Furthermore, 
ANN outperformed LR in predicting venous throm-
boembolism, wound complication, and mortality rate. 
In comparison, both the SVM and RF models were 
unable to perform better than random chance, which 
suggests that selecting the appropriate ML algorithm is 
an important factor to consider. As with any ML model, 
the performance hinges on the quality of the training 
data. Although NSQIP includes a large national sample 
of surgical patients, it lacks highly granular data perti-
nent to spine surgery. As a result, many surgery-specific 
variables, which may serve as stronger inputs, are not 
available to include in these models.

In 2019, one of the first studies to use ML to predict 
patient-reported outcomes after surgery for degenera-
tive cervical myelopathy was performed by Merali et 
al.10 These authors used a prospective, multicentered 
database to review 757 patients and compared multiple 
ML models (DT, RF, SVM, LR, and ANN) to predict 
patient-reported outcomes (Short Form-6D and modi-
fied Japanese Orthopaedic Association [mJOA]) after 
surgery. As measured by the AUC, the RF and SVM 
models outperformed LR and DT in up to 2-year 
follow-ups, which was attributed to the ability of these 
models to process more complex nonlinear and condi-
tional relationships than either LR or DT models. The 
RF model found that the longer duration of preoperative 
symptoms, worse preoperative disease severity, older 
age, greater body weight, and current smoking status 
were associated with worse postoperative outcomes. Of 
note, this study did not include radiographic parameters 
in their models, which may have improved the perfor-
mance. Furthermore, ANN performed poorly compared 
with the other models. This was likely due to the rela-
tively limited number of training samples since ANN 
models are known to generally require larger training 
samples than SVM or RF for adequate training.

Wong et al used SVM to identify demographic, 
radiographic, and paraspinal muscle parameters that 
would predict proximal/distal adjacent segment disease 
after 2-level ACDF.11 The SVM model achieved high 
accuracy (96.7%) and an AUC (0.97) for predicting 

adjacent segment disease. This study found that pre-
operative total cross-sectional area of cervical paraspi-
nal muscle, relative fat composition, and asymmetry 
at C5 to C7 were predictive for early onset of adjacent 
segment disease.

Another application of ML in cervical spine has 
involved medical image analysis.12 Computer vision 
techniques have shown the potential for a wide spec-
trum of medical applications and recently shown 
adoption within spine surgery. Huang et al reviewed 
over 300 images of 9 different ACDF systems from 5 
different companies to identify the manufacturer and 
model of anterior cervical spinal hardware.13 Knowing 
the manufacturer and model of prior cervical implants 
can facilitate faster and safer revision surgeries. These 
authors used a computer vision algorithm “bag of visual 
worlds” instead of other well-known techniques such as 
CNN because the primary task was the classification of 
a relatively sparse dataset. Images were subsequently 
classified by an SVM classifier. These authors achieved 
an accuracy of greater than 90% with a relatively small 
sample size, and this performance persisted for 1-level, 
2-level, and 3-level plates.

Recently, ML applications in predicting the diag-
nosis and severity of cervical spondylotic myelopathy 
have shown promise. Hopkins et al used ANN on clin-
ical and radiographic factors on 18 images to predict 
cervical spondylotic myelopathy as well as mJOA 
scores.14 These authors achieved a median accuracy of 
90% as well as mJOA scores within 0.4 points. This 
study was limited by the small sample size and lack of 
comparative partition analyses for training, testing, and 
validating, which are commonly used to optimize ML 
models.

APPLICATIONS OF MACHINE LEARNING 
IN THE LUMBAR SPINE

Several studies have used ML algorithms to predict 
complications after lumbar surgery. Kim et al used the 
NSQIP database to study more than 22,000 patients 
who underwent lumbar fusion surgery.15 They trained 
and validated both ANN and LR models to predict 
postoperative complications (cardiac, wound, venous 
thromboembolism, and mortality). On the basis of AUC 
values, ANN and LR had comparable AUC values for 
predicting all complication types; however, ANN had 
greater sensitivity for detecting wound complications 
and mortality. The main difference between ANN and 
LR models is that ANN allows the characterization of 
nonlinear relationships in the data and has the potential 
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for slightly better accuracy for relatively rare compli-
cations, which is important for medical prognostica-
tion.16,17

Hopkins et al examined the efficacy of deep neural 
network to predict 30-day hospital readmission after 
posterior lumbar fusion based on more than 20,000 
patients in the NSQIP database.18 This model took 
advantage of the 177 unique input variables of the 
NSQIP database and fed data through a series of 7 
layers, each with varying degrees of forward and back-
ward communicating neurons and sporadic dropout 
layers to avoid overfitting. Ultimately, this model out-
performed LR by achieving an AUC of 0.81 (vs 0.72).

Ogink et al used the NSQIP database to study patients 
with degenerative spondylolisthesis and compared 4 
ML algorithms (DT, SVM, Bayes point machine, and 
ANN) in their ability to predict discharge placement 
after surgery.19 The AUC was fairly similar among all 
4 models (DT AUC = 0.733, SVM AUC = 0.742, ANN 
AUC = 0.755, and Bayes point machine AUC = 0.753). 
This study demonstrated the predictive capabilities of 
ML on discharge placement with good discrimination 
and performance. These authors have subsequently 
developed a web application for further clinical utility.

Kuris et al examined the records of more than 60,000 
patients who underwent lumbar fusion from the NSQIP 
database and ANN to predict 30-day readmission.20 
The ANN algorithm was able to achieve an accuracy 
of 94.6% for anterior lumbar interbody fusion, 94% for 
posterior lumbar interbody fusion, and 92.6% for poste-
rior spinal fusion with AUC values 0.64 to 0.65.

Harada et al performed a retrospective, single-
center review of 2630 patients who underwent lumbar 
microdiscectomy to examine the utility of ML to 
predict the risk of recurrent herniated nucleus pulpo-
sus.21 Input variables included patient demographics/
comorbidities, clinical factors (eg, number of herni-
ated levels, type of herniation, duration of symptoms, 
motor examination, surgical approach), patient-
reported outcomes, and radiographic factors. These 
authors used an ML algorithm called “extreme gradi-
ent boosting classification (XGBoost classification),” 
which involves both linear model and tree learning 
algorithms. This model demonstrated excellent model 
discrimination with an accuracy 0.7, an AUC 0.72, 
and a Brier score of 0.21.

To the authors’ knowledge, Roller et al were the 
first to use ML to predict the level of lumbar spinal 
decompression. These authors used CNN to predict the 
lumbar decompression level based on magnetic reso-
nance images of 141 patients.22 This algorithm was able 

to predict with an accuracy of 65%, with higher mean 
scores for L3-S1 surgical levels.

MACHINE LEARNING APPLICATIONS IN 
ADULT SPINAL DEFORMITY

Postoperative Complications

Adult spinal deformity (ASD) is known to be asso-
ciated with a high complication rate, and numerous 
studies have sought to characterize the risk profile for 
this population. Until recently, a common limitation 
has been a lack of patient-specific, predictive models 
to account for this diverse patient population and wide-
ranging potential risk factors. A commonly used statis-
tical analysis has been LR because it is simple, easy 
to interpret, and readily transparent. Over the past few 
years, numerous studies have explored more robust ML 
algorithms in ASD surgery. Using a prospective mul-
ticenter database of 557 patients, Scheer et al used an 
ensemble of DTs to predict which patients sustained at 
least 1 major intraoperative or perioperative (6 weeks) 
complication after ASD surgery.23 In comparison with 
other multicenter registries, this database included a 
comprehensive set of patient factors, surgical variables, 
implant characteristics, radiographic measures, and 
patient-reported outcomes. The overall model accu-
racy was 87.6% with an AUC of 0.89. According to the 
authors, a DT framework was used due to its ability to 
process a large number of input variables (both cate-
gorical and continuous), ease of construction, feasibil-
ity with missing data, and deal with potential nonlinear 
relationships in the data. Furthermore, an ensemble of 
5 DTs was used to increase accuracy but at the cost of 
decreasing interpretability. A limitation of this study 
was combining both intra- and perioperative complica-
tions as a single outcome, which likely was due to the 
sample size (148 patients with at least 1 complication). 
Nevertheless, this study was one of the first to demon-
strate the potential role of predictive analytics in ASD 
outcomes research.

Yagi et al similarly created a predictive model 
(ensemble of 5 DTs) for complications of 195 ASD 
patients using extensive demographic, surgical, and 
radiographic data.24 The overall accuracy of their model 
was 92.5% with an AUC of 0.963, with an 84% accu-
racy in the external validation. Compared with Scheer 
et al, these authors focused on predicting postoperative 
complications occurring within 2 years after surgery in 
older patients (age ≥50 years) as well as the inclusion 
of patient frailty, which is a known risk factor for major 
complications.25
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Jain et al leveraged the State Inpatient Database 
to study a larger population of 37,852 patients who 
underwent long-segment lumbar posterior spine 
fusion.26 RF, LR, and elastic net regression models 
were used to predict discharge disposition, 90-day 
readmission, and 90-day major medical compli-
cations after surgery. Interestingly, the more tra-
ditionally used LR model appeared to outperform 
the other 2 ML algorithms for discharge to facil-
ity (AUC: LR 0.77 vs RF 0.75 vs elastic net 0.76), 
90-day readmission (AUC: LR 0.65 vs RF/elastic 
net 0.63), and 90-day medical complications (AUC: 
LR 0.7 vs RF/elastic net 0.68). However, these dif-
ferences are likely not clinically relevant. There-
fore, this study’s findings should not be taken to 
imply that LR is a superior ML algorithm. Readers 
should be aware that given the linear relationship 
between the independent variables and the log-odds 
of the outcome, the results are often more easily 
interpretable with LR. In comparison, RF is a non-
parametric ML algorithm that is capable of account-
ing for nonlinear relationships, yet the results have 
limited inferential capabilities.

Similar to Jain et al study, Kim et al used a 
national database to study the 30-day postoperative 
complications (cardiac, wound, venous thrombo-
embolism, and mortality) of patients undergoing 
elective ASD surgery.27 Both ANN and LR models 
outperformed the ASA scoring system in predict-
ing every complication. Furthermore, these authors 
found that ANN outperformed LR for all complica-
tions except venous thromboembolism (P < 0.05). 
Durand et al used the NSQIP database on 1029 
patients with ASD and compared both DT and RF 
models to predict intra-/postoperative blood trans-
fusion.28 The RF achieved a higher AUC (0.85 vs 
0.79), but this difference was not statistically sig-
nificant (P = 0.155). These findings highlight that 
none of the models performs the best on all datasets 
and that it is advisable to include multiple ML tech-
niques for comparative purposes. Although national 
registries (the State Inpatient Database and NSQIP) 
provide large patient samples, these databases are 
deidentified and limited by the lack of radiographic 
data and surgery-specific variables, which may 
influence model performance.

Other Surgery-Specific Complications

Recent studies have used ML to predict other 
surgery-specific complications, including proxi-
mal junctional kyphosis (PJK), proximal junctional 

failure (PJF), and pseudarthrosis after ASD surgery. 
In 2016, Scheer et al used an ensemble of DT on 
510 patients to predict PJK and PJF.29 Their model 
accuracy was 86.3%, with an AUC of 0.89. They 
found that the strongest predictors were age, lower 
instrumented level, preoperative sagittal vertical 
axis, upper instrumented vertebra implant type, 
upper instrumented vertebra, preoperative pelvic 
tilt, and preoperative pelvic incidence–lumbar lor-
dosis (PI-LL) mismatch. However, a limitation of 
this study was combining both PJK and PJF as 1 
outcome rather than as 2 complications, which may 
be managed differently. In contrast, Yagi et al per-
formed an ensemble of DT models to predict PJF 
alone on 145 patients as well as included bone 
mineral density as an input feature among several 
other patient, radiographic, and surgical factors.30 
They reported an accuracy of 98% with an AUC of 
1.0. In another study, Scheer et al used DT to predict 
pseudarthrosis with 2-year follow-up based on an 
array of demographic, radiographic, and surgical 
factors.31 Their model achieved a 91.3% accuracy 
with an AUC of 0.94. To our knowledge, this was 
the first study to use ML to predict pseudarthrosis 
after ASD surgery.

Patient-Reported Outcomes

Another popular application of ML has been 
predicting the minimum clinically important dif-
ference patient-reported outcome following ASD 
surgery. Scheer et al applied DT models on 198 
patients and achieved an accuracy of 86% with an 
AUC of 0.94.32 Interestingly, the top predictors 
were not surgical parameters but clinical and radio-
graphic factors (gender, sagittal vertical axis, PI-LL 
mismatch, T1 spinopelvic inclination angle, ASA, 
T1 pelvic angle, Scoliosis Research Society [SRS] 
pain, and SRS total). The following year, Ames et 
al augmented this analysis by performing a retro-
spective analysis of prospectively collected, multi-
center data on 570 patients to predict the likelihood 
of reaching a minimum clinically important differ-
ence in patient-reported outcomes at 1- and 2-year 
postoperative follow-up.33 Multiple ML algorithms 
were used (including ordinary least squares, ordi-
nary least squares with partitions, elastic net, gra-
dient boosting machines, XGBoost tree, XGBoost 
linear, RF, and generalized linear modeling), and 
the composite of these models created a prediction 
tool for each patient. Model performance was eval-
uated using the mean absolute error (MAE), and the 
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final model was selected based on the minimization 
of MAE and goodness of fit using R2. The MAE 
ranged from 8% to 15%, which demonstrated suc-
cessful model performance.

Clinical Decision-Making

Other applications of ML involve models to 
support clinical decision-making. Durand et al used 
various ML models to predict whether patients with 
ASD were managed operatively vs nonoperatively.34 
More than 1500 patients were followed up to 1 year 
after their baseline visit. RF, SVM, and elastic net 
regression models were used and compared against 
LR. The SVM (AUC 0.914) and elastic net (AUC 
0.913) models had excellent discrimination com-
pared with LR (AUC 0.896) and RF (AUC 0.830). 
The SVM model showed 86% accuracy. Ultimately, 
this study showed that the shared decision-making 
process between operative and nonoperative manage-
ment could be computationally predicted with excel-
lent performance given the complexity of factors 
involved in such decisions. However, it is import-
ant to note that these models predicted patients who 
underwent surgery and not necessarily who “should” 
undergo surgery.

Another approach to augment preoperative clin-
ical decision-making is leveraging unsupervised 
ML algorithms. One of the challenges in provid-
ing patient-specific management is examining 
the hundreds of possible data points (eg, demo-
graphics, comorbidities, and radiographic and 
patient-reported outcomes) for any given patient 
in the preoperative setting. Although classification 
systems exist, such as the SRS-Schwab classifica-
tion, these often focus on radiographic parameters 
and fail to include other potentially important vari-
ables.35 To address this, Ames et al developed a phy-
logenic dendrogram based on hierarchical clustering 
of patient parameters.36 This resulted in 3 clusters: 
(1) “young coronal,” which included the youngest 
patients (mean age 47.6 years) with a deformity pre-
dominantly with scoliosis (mean Cobb angle 50.4°), 
(2) “old revision,” which involved relatively older 
patients (mean age 62.3 years) with a high incidence 
of prior surgery (48%), and (3) “old primary,” which 
included older patients (mean age 61 years) with a 
low incidence of prior spine surgery (7%). The same 
was performed for surgical parameters, which had 
4 distinct groups: (1) 3-column osteotomy patients, 
(2) no osteotomy and no interbody fusion, (3) inter-
body fusion, and (4) Smith-Peterson osteotomy. In 

comparison with prior ML applications in predictive 
models for complications, this study illustrated the 
potential for broader applications of ML. Through 
this novel application of an unsupervised hierarchi-
cal clustering model, Ames et al demonstrated the 
potential of ML to sift through the complex features 
of ASD and define relevant patient clusters in a 
purely data-driven approach.

FUTURE DIRECTIONS OF ARTIFICIAL 
INTELLIGENCE IN SPINE SURGERY

The current literature on ML in spine surgery 
is promising as it has already demonstrated wide-
ranging applications for the cervical spine, the 
lumbar spine, and ASD. Other possible ML appli-
cations include integration in the preoperative plan-
ning phase and with other existing technologies, 
such as robot-assisted surgery and/or augmented 
reality systems. A variety of surgical options exist 
for ASD (eg, 3-column osteotomies, level selection, 
and interbody fusion), each with their own potential 
risks and benefits. The determination of the optimal 
surgery for each individual patient is often at the 
discretion of the surgeon. Furthermore, predicting 
postoperative alignment and specifically reducing 
the risk of PJK/PJF remain a significant challenge 
for ASD surgery. ML has the potential to augment 
surgeon decision-making and improve surgical 
outcomes. This will hinge on continuing to build 
an ensemble of models based on high-quality and 
robust databases as well as further validation and 
ultimate consolidation of published models to better 
integrate in clinical practice. It is important to keep 
in mind, however, that the goal of AI and ML is not 
to replace but to complement the surgeon in provid-
ing safer and more efficient patient-centered care.
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