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ABSTRACT
Background: Artificial intelligence (AI) tremendously influences our daily lives and the medical field, changing the 

scope of medicine. One of the fields where AI, and, in particular, predictive modeling, holds great promise is spinal oncology. An 
accurate patient prognosis is essential to determine the optimal treatment strategy for patients with spinal metastases. Multiple 
studies demonstrated that the physician’s survival predictions are inaccurate, which resulted in the development of numerous 
predictive models. However, difficulties arise when trying to interpret these models and, more importantly, assess their quality.

Objective: To provide an overview of all stages and challenges in developing predictive models using the Skeletal 
Oncology Research Group machine learning algorithms as an example.

Methods: A narrative review of all relevant articles known to the authors was conducted.
Results: Building a predictive model consists of 6 stages: preparation, development, internal validation, presentation, 

external validation, and implementation. During validation, the following measures are essential to assess the model’s performance: 
calibration, discrimination, decision curve analysis, and the Brier score. The structured methodology in developing, validating, 
and reporting the model is vital when building predictive models. Two principal guidelines are the transparent reporting of a 
multivariable prediction model for individual prognosis or diagnosis checklist and the prediction model risk of bias assessment. 
To date, many predictive modeling studies lack the right validation measures or improperly report their methodology.

Conclusions: A new health care age is being ushered in by the rapid advancement of AI and its applications in spinal 
oncology. A myriad of predictive models are being developed; however, the subsequent stages, quality of validation, transparent 
reporting, and implementation still need improvement.

Clinical Relevance: Given the rapid rise and use of AI prediction models in patient care, it is valuable to know how to 
assess their quality and to understand how these models influence clinical practice. This article provides guidance on how to 
approach this.

Level of Evidence: 4.

Other and Special Categories

Keywords: artificial intelligence, machine learning, orthopedic surgery, prediction tools, clinical decision support, spinal 
oncology

INTRODUCTION

Artificial intelligence (AI) tremendously influences 
not only our daily lives but also the medical field, 
changing the scope of medicine. Improvements in com-
putational power, along with AI- based software plat-
forms, and the availability of more extensive electronic 
data, have enabled the development of many different 
applications, such as machine learning (ML)–derived 
clinical decision support tools, deep learning- based 
computer vision, and natural language processing.1 Oos-
terhoff et al suggested in 2020 that we have reached the 
peak of inflated expectations in medical AI along with 
Gartner’s hype cycle (Figure 1).2 Although the promise 
of AI remains strong, where an individual stands on 
the hype cycle would depend on their experience and 

understanding of AI. Individuals new in this field can 
still be at the peak of inflated expectations, while more 
experienced individuals might be toiling through the 
trough of disillusionment as challenges in implement-
ing AI applications are becoming more apparent. The 
purpose of the present article is to provide a narrative 
review of AI and predictive modeling in spinal oncol-
ogy and discuss the potential and limitations of the 
technology. We present no unpublished data and refer-
ence to data from previously published studies.

Spinal Oncology

One of the fields where AI, and, in particular, predic-
tive modeling, has made significant advances is spinal 
oncology. The spine is the most common location of 
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metastatic cancer disease,3–5 and 30% to 90% of patients 
who die of cancer have spinal metastasis in cadaver 
studies.6–9 Up to 50% of spinal metastasis require treat-
ment, and 5% to 10% need surgical management.8,10,11 
Moreover, cancer survival rates are increasing due to 
earlier detection and improved treatment, and the prev-
alence of spinal metastasis will also likely increase.12 
In 2005, the landmark article of Patchell et al13 showed 
that surgical intervention is efficacious in treating met-
astatic spinal tumors. Following this, together with the 
emergence of a myriad of treatments, including per-
sonalized systemic therapy and targeted therapy, a sys-
temic decision framework for treating spinal metastases 
was necessary.14 In 2015, the neurologic, oncologic, 
mechanical, and systemic decision framework was 
developed to determine the optimal therapy for patients 
with spinal metastases.15 This framework enabled phy-
sicians to apply a systematic approach to treating spinal 
metastases, resulting in an increased surgery rate.16 
However, spinal surgery is not without risk; surgery 
complications are a significant source of comorbidity 
and include wound infections, neurologic impairment, 
venous thromboembolism, instrumentation failure, and 
pain.17–20 Moreover, patients with metastatic spinal 
disease generally have multiple medical comorbidities 
and are immunocompromised due to immune suppres-
sion.21 Therefore, treatment goals focus on whether 
patients will likely recover from the indicated proce-
dure.22 The appropriate use of surgery for metastatic 
spinal disease is dependent on the expected risk of 
surgery and the expected benefit. Accurate expecta-
tions for risk and benefit would be valuable to empower 
informed choice for physicians and patients.

The Emergence of Prediction Tools

Multiple studies have shown that physicians’ clini-
cal predictions of the life expectancy of cancer patients 
are inaccurate.23,24 In 2005, Nathan et al showed that 
a better means of prognostication was needed.25 Con-
sequently, numerous new scoring systems and prog-
nostic calculators were developed.26–36 Unfortunately, 
many did not meet the required accuracy, performed 
inconsistently, or lacked personalized predictions.26,37 
Thirteen survival prediction scores exist, including 
PATHFx,38 Skeletal Oncology Research Group ML 
algorithms (SORG- MLA),33 Bollen Classification,39 
modified Bauer score,34 and van der Linden40 (Sup-
plement 1).27,41–47 Of these prediction scores, SORG- 
MLA and PATHFx are the only 2 ML algorithms. Over 
the past years, SORG- MLA demonstrated its clinical 
value and promise over other prediction scores such as 
nomograms or regression models. However, important 
questions regarding the use of AI in predictive models 
remain, including the following: (1) How do we inter-
pret prognostic AI models such as SORG- MLA? (2) 
How do we assess their quality? and (3) How will these 
models influence clinical practice?

DEVELOPMENT, VALIDATION, AND 
IMPLEMENTATION OF PREDICTION 

MODELS

Why Machine Learning?

Statistical models have been widely used to formal-
ize the understanding of data, but since data size and 
variable inputs increased, these models have become 
more complex. Fortunately, ML models have become 
more powerful due to an increase in computational 
power. According to Bzdok et al,48 “statistics draws 
population inference from a sample, and ML finds 
generalizable predictive patterns.” In principle, many 
methods from statistics and ML can be used for both 
prediction and inference. However, statistical methods 
have a long- standing focus on inference, achieved 
through creating and fitting a project- specific probabil-
ity model. In contrast, ML concentrates on prediction 
with general purpose learning algorithms to find pat-
terns in often rich and unwieldy data.49,50 They are par-
ticularly helpful when dealing with “wide data,” where 
the number of input variables exceeds the number of 
subjects. Thus, where statistical models are generally 
hypothesis- driven, ML is more exploratory in iden-
tifying correlations, and the pattern of correlation is 
not a causal relationship. This may be recognized as a 

Figure 1. Gartner’s hype cycle. Source: Reprinted with permission from 
Oosterhoff JHF, Doornberg JN. Artificial intelligence in orthopaedics: false 
hope or not? A narrative review along the line of Gartner’s hype cycle. EFORT 
Open Rev. 2020;5(10):593–603. © 2020 Oosterhoff and Doornerg.
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limitation of ML. However, with the possession of large 
patient data sets due to electronic health care systems, 
ML provides the opportunity to find patterns and deter-
mine values predictive of the output requested. There-
fore, ML offers a more accurate solution for developing 
prediction models, such as the survival probability of 
patients with metastatic spine disease, which is com-
plicated and requires multiple aspects to be considered.

Steps in Building Predictive Models

Structured methodology in the development and val-
idation of an ML model is of great importance and is 
best executed along the ABCD steps of Steyerberg et 
al.51 Additionally, 2 important guidelines are important 
to adhere to: the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis 
(TRIPOD)52 checklist, essential for transparent report-
ing of a prediction model study, and the prediction 
model risk of bias assessment (PROBAST),53 a tool for 
assessing the risk of bias and applicability of predic-
tion model studies. With the SORG- MLA for 1- year 
survival, developed and validated multiple times within 
our research team, as an example, we will go through 
the steps of model preparation, development, validation, 
presentation, and implementation (Figures 2–4).54–57

The first step is the consideration of the research 
question and initial data inspection. For the develop-
ment of the SORG- MLA, the objective was to find 
predictive variables and develop a predictive algo-
rithm for survival of metastatic spinal disease at inter-
mediate (90- day) and long- term (1- year) time points. 
Based on the expert knowledge and previous literature, 
we chose a framework of input variables to consider. 
Patients were included when they were older than 18 
years, had a diagnosis of metastatic spinal disease, and 
had an initial surgical procedure performed between 1 
January 2000, and 31 December 2016. Missing data 
were imputed with the missForest multiple imputation 
method, which is currently considered one of the supe-
rior imputation methods. Baseline data collection was 
retrospective, and the definitions of all input variables, 
generally referred to as predictors, were carefully doc-
umented.

The second step is the coding of the predictors. Cate-
gorical and continuous predictor variables can be coded 
in different ways. At the start of model development, 
coding the variables in a detailed way is preferred so 
that in a later phase, when relative effects of predictors 
are known, a user- friendly variable format may be used. 
For example, when coding the variable of primary tumor 
histology, we might see that coding the variable in 3 

Figure 2. The first 3 stages in model development: preparation, development, and internal validation. TRIPOD, transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis; PROBAST, prediction model risk of bias assessment tool; EHR, electronic health record.
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groups according to primary tumor instead of coding 
them all separately would result in similar performance, 
making the model simpler to use.

The third step is the model specification, where we 
choose the predictors for inclusion in the prediction 
model (Figure 5). For SORG- MLA, we used random 
forest algorithms with 10- fold cross- validation, which 
enabled us to find the optimal subset of predictors while 
keeping the variance of the model performance low and 
avoiding overfitting.

The fourth step is the model estimation: choosing the 
right ML model (Figure 6). For SORG- MLA, we used 5 
different models based on a previous study’s method.58 
The data were then divided into a training set (80%) 

and a holdout validation set (20%). The training set is 
used to train the models, and the validation set is used 
to internally validate the model. An independent vali-
dation set is essential to test the models on unseen data.

The fifth and sixth steps are the validation and eval-
uation of model performance, where we determine the 
quality and performance of the algorithms and alter the 
algorithm if necessary. Evaluation and validation are 
ideally performed along the ABCD steps; these will be 
discussed in the next section.

The seventh, and final, step is the model presentation 
such that it best addresses the clinical needs. We pre-
sented SORG- MLA as an open access web- based appli-
cation to facilitate accessibility (see https://sorg-apps. 

Figure 3. The last 3 stages in model development: presentation, external validation, and implementation. TRIPOD, transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis; PROBAST, prediction model risk of bias assessment tool; EHR, electronic health record.

Figure 4. Overview of validation measures. C- statistic, concordance statistic; AUC, area under the curve; ROC, receiver operating characteristic.
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shinyapps.io/spinemetssurvival/). However, ultimately, 
integration into decision aids and electronic patient 
records will best support clinical decision- making.59

Validation Methods

Model validation is the process by which predictions 
are compared with independent real- world observations 
to judge quantitative and qualitative properties of the 
model. There are 4 important measures based on the 
“ABCD” steps of Steyerberg et al,51 which together 

provide an accurate and well- established validation and 
evaluation: calibration, discrimination, decision curve 
analysis, and the Brier score.38,57,60,61

Calibration (A and B) refers to the agreement between 
observed end points and predictions and answers the 
question: Is the model as reliable when it predicts a 10% 
probability as when it predicts a 70% probability of 
mortality?62 It can be best assessed graphically in a cal-
ibration plot with survival predictions on the x- axis and 
real- world observations on the y- axis. Perfect calibration 

Figure 5. Model specification. With a random forest algorithm, we created many different predictor sets (sets with different input variables) which we tested with 
10- fold cross- validation to find the optimal set of predictors. This technique fits the model 10 times, with each fit being performed on a training set of a different 
90% of the data with the remaining 10% as a holdout set for validation. Each fit produces a performance metric, and the average of all these fits results in the 
average performance of a predictor set.
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of a model should have a straight line, described with an 
intercept of 0 and a slope of 1. Imperfect calibration can 
be observed by deviation from this ideal straight line 
(Figure 3). This calibration plot helps visualize whether 
models overestimate or underestimate the outcome. The 
SORG- MLA achieved an intercept of 0.07 and a slope 
of 1.26 (Figure 7), showing a near perfect intercept and 
a slightly higher slope, indicating that there are indi-
viduals or subgroups in whom calibration is suboptimal 
and survival is overestimated.63

Discrimination (C) refers to the ability of the model 
to distinguish the end points, that is, whether a patient 
is dead or alive at the specified time point. The measure 
is quantified by the area under the curve of the receiver 
operating characteristic curve, which represents the 
probability that the model will be able to differentiate 
between patients who survived and those who died. 
Interpretation of this curve can be simplified: 0.51 to 
0.69 poor, 0.70 to 0.79 fair, 0.80 to 0.89 good, 0.90 
to 0.99 excellent. The SORG- MLA achieved an area 
under the curve of 0.89.63

Even though calibration, discrimination, and the 
Brier score are essential, these measures do not assess 
the clinical usefulness or the ability to make better clin-
ical decisions with the model than without. To deter-
mine the impact of these models on clinical decisions, 

it is essential to perform a decision analysis (D). Even 
though this type of analysis has been around for a sig-
nificant amount of time, it only recently started gaining 
popularity as a necessary tool in prediction models.62,64 
Decision curve analysis examines the net benefit of 
decisions made based on the model predictions. Chang-
ing management for all patients and changing man-
agement for no patients are the 2 default strategies for 
decisions without prediction models. Decision curves 
show whether the clinical prediction model used for 
management changes offers a greater net benefit than 
the 2 default strategies. The SORG- MLA showed 
greater standardized net benefit at all predicted prob-
abilities relative to management decision change based 
on treating all patients or no patients (Figure 8).57

Another important measure, although not recorded in 
the ABCD steps, is the Brier score: a summary measure 
that formalizes the performance of predictions. The so- 
called “null model” of the Brier score corresponds to 
the scenario where every patient is predicted to have a 
risk equal to the prevalence of mortality in the whole 
disease population. The Brier score calculates the error 
between the prediction and observed outcome for each 
patient and compares it to the null model. Ideally, zero 
error between the predictions and outcomes is preferred, 
resulting in a perfect Brier score of 0. The SORG- MLA 
achieved a Brier score of 0.13, whereas the null model 
had a Brier score of 0.25.63

Validation of the model can only be adequately 
assessed when all measures are performed. For example, 
a model can have excellent discrimination but very poor 
calibration. Or, a model could have good discrimination 
and calibration but worse standardized net benefit com-
pared with default changes in management, resulting 
in a model that harms clinical decision- making. There-
fore, assessing and reporting every validation measure 
mentioned above are essential.

Internal and External Validation

Assessing model validation is executed at 2 stages: 
internal validation at the end of model development 
and external validation when the model is already pre-
sented. The difference is that internal validation is per-
formed at the institute that develops the model, whereas 
external validation is done at multiple (different) insti-
tutions, assessing the model’s generalizability to differ-
ent patient populations. When validating a prediction 
model, it is important to not only assess the measures 
mentioned before but also assess whether the model 
has been developed correctly. To facilitate this, trans-
parent and complete reporting of the development and 

Figure 6. Model estimation. For SORG- MLA, we used 5 different models: 
random forests, stochastic gradient boosting, neural network, support vector 
machine, and penalized logistic regression. SORG- MLA, the Skeletal Oncology 
Research Group machine learning algorithms.
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validation of a model are required to allow the reader 
to critically assess the presence of bias, facilitate study 
replication, and correctly interpret results.65 External 
validation of SORG- MLA has been done extensively 
in the United States and multiple international patient 
populations (Table).54–57 However, the overall survival 
of patients with spinal metastases is improving and 
will hopefully keep improving due to improved treat-
ments and clinical decision- making.12 This may result 
in lower performance of the model in the future. There-
fore, it is vital to continuously monitor and validate the 

performance of ML models so that clinicians and data 
scientists can identify and assess performance devi-
ations as soon as possible and recalibrate or update 
models if necessary.

Implementation

Once external validation has been successful, the 
next step is implementing the model into clinical 
practice. An essential factor for integrating a model 
into clinical practice is ensuring clinicians’ trust and 

Figure 7. Calibration: calibration plot of SORG- MLA predicting 90- d and 1- y mortality at (A) internal validation and (B) external validation (Taiwan). Comparing 
these plots demonstrates that SORG- MLA performs differently in other populations, highlighting the importance of external validation. SORG- MLA, the Skeletal 
Oncology Research Group machine learning algorithms. Source: Reprinted from with permission from The Spine Journal, Vol 21, Yang J- J, Chen C- W, Fourman 
MS, et al, International external validation of the SORG machine learning algorithms for predicting 90- day and one- year survival of patients with spine metastases 
using a Taiwanese cohort, 1670- 1678, Copyright 2021, with permission from Elsevier.56
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accurately interpreting the model.66 To earn this trust, 
transparent reporting of the model’s development, 
internal, and external validation is essential. Next, we 
must assess the real- world performance of the model 
on operational data, thus validating the algorithm on 
a prospective cohort by comparing the model perfor-
mance with a surgeon with or without the model. Con-
sequently, the performance of the developed model is 

ideally assessed with randomized control trials. Guide-
lines such as CONSORT- AI (Consolidated Standards 
of Reporting Trials - Artificial Intelligence) and SPIR-
IT- AI (Standard Protocol Items: Recommendations for 
Interventional Trials - Artificial Intelligence) have been 
developed to assist in the application for these trials.

To facilitate easy access to SORG- MLA, we pre-
sented the model as an open access web application. 

Figure 8. Decision curve analysis: decision curve of SORG- MLA predicting 90- d and 1- y mortality at external validation. SORG- MLA, the Skeletal Oncology 
Research Group machine learning algorithms. Source: Reprinted from The Spine Journal, Vol 21, Shah AA, Karhade AV, Park HY, et al, Updated external validation 
of the SORG machine learning algorithms for prediction of ninety- day and one- year mortality after surgery for spinal metastasis, 1679–1686, Copyright 2021, with 
permission from Elsevier.57

Table. External validations of SORG- MLA predicting 90- d and 1- y mortality.

Study Institution, City, Country Patients
Calibration: 

Intercept
Calibration: 

Slope Discrimination

Brier 
Score 
Model

Brier 
Score 
Null

Decision Curve 
Analysis 

Performed

Karhade et al, 
202054

John Hopkins University, School of 
Medicine, Baltimore, USA

176

  90- d Mortality −0.10 0.64 0.75 0.157 0.176 Yes
  1- y Mortality 0.43 0.77 0.77 0.199 0.246 Yes
Bongers et al, 

202055
Memorial Sloan- Kettering Cancer 

Center, New York, USA
200

  90- d Mortality −0.07 0.64 0.81 0.17 0.20 Yes
  1- y Mortality 0.57 0.85 0.84 0.16 0.23 Yes
Yang et al, 202156 National Taiwan University 

Hospital, Taipei, Taiwan
427

  90- d Mortality 0.81 0.51 0.73 0.17 0.19 Yes
  1- y Mortality 0.08 0.59 0.74 0.20 0.24 Yes
Shah et al, 202157 David Geffen School of Medicine 

at UCLA, USA
298

  90- d Mortality −0.65 0.80 0.84 0.13 0.17 Yes
  1- y Mortality 0.08 1.20 0.90 0.13 0.25 Yes

Abbreviation: UCLA, University of California, Los Angeles.
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However, a real- time outcome calculator based on the 
developed ML algorithm and routinely collected data 
is best established, validated, and integrated within 
the electronic health record (EHR) systems.59 This has 
implications for patient privacy and creates obstacles 
for implementation.67 For SORG- MLA, we are cur-
rently performing an international, multicenter pro-
spective study to evaluate the survival predictions of 
surgeons with or without the model. Consequently, if 
the study shows survival predictions improve signifi-
cantly, implementation into EHR will follow.

RECOMMENDATIONS AND 
CHALLENGES

Despite the potential increased benefit of predictive 
models, there are restrictions and risks associated with 
ML models. As we have gone through all aspects of 
model processing, we will highlight several challenges 
in each stage.

Preparation

The quality of the data from which prediction models 
are produced determines the quality of those models.68 
Even if the amount of data is large, data inaccuracy and 
missing data still pose serious problems when EHR data 
are used and may impact prognostic factors, treatment 
exposures, and outcome estimation.69 Because exist-
ing ML models are created using small, retrospective 
cohorts or registries, they frequently lack generalizabil-
ity. This is particularly problematic in ML algorithms as 
they tend to amplify the biases and confounds already 
present in a dataset. Therefore, the PROBAST bias tool 
is so important. To increase the available data, many 
institutions are setting up multicenter or international 
databases or registries. However, these may be con-
strained by varied terminology affecting data labeling.

Considering the cost and time needed to utilize 
predictive modeling, spine surgeons, oncologists, and 
researchers should balance the upfront investment of 
time and money required to develop and validate pre-
dictive models.70 Predictive ML models can assist clini-
cians, but if there is no apparent need for more accurate 
predictions or if simple statistical models suffice, devel-
oping these models would not necessarily be advanta-
geous.

Development and Validation

Even though there has been a massive increase in 
the volume of predictive models, quality and transpar-
ent reporting were not performed consistently. Quality 

of reporting refers to the application and reporting of 
the established validation measures. Unfortunately, of 
18 studies externally validating 10 different ML predic-
tion models in orthopedic surgery, only 39% reported 
calibration and 50% reported decision curve analysis.71 
Transparent reporting refers to whether an article men-
tions all required items in development and validation 
recommended by the TRIPOD checklist and PROBAST 
tool. A recent study by Groot et al65 showed that in 
ML studies in orthopedics, adherence to the TRIPOD 
guidelines and PROBAST bias tool was limited. They 
reviewed 59 ML prediction studies published in ortho-
pedic surgery, of which 18 (31%) were in the spine. The 
overall completeness for the TRIPOD checklist was 
53%, and the overall risk of bias was low in 44%, high 
in 41%, and unclear in 15%.65

These results show that many studies incompletely 
reported their methods and performance measures. 
This, together with the fact that the relative novelty of 
this technique is viewed skeptically, makes it harder 
for clinicians to rely on predictive models. Thus, to 
enable trust and facilitate implementation, adherence 
to the guidelines and transparent reporting of these 
steps are essential. Consequently, TRIPOD- AI and 
PROBAST- AI were recently proposed for explicit use 
in AI to further aid in directing the future of this field.72

Even so, the aforementioned performance evalu-
ations might not be sufficient to identify harmful or 
uninformative algorithms.69 Moreover, recent research 
has demonstrated that models created using retrospec-
tive data may be biased against racial minorities.73 Last, 
many AI algorithms are referred to as black boxes: we 
are unaware of the operations between input and output. 
Thus, fully interpreting the models becomes difficult. 
For this reason, the website of SORG- MLA contains 
explanations for which predictors contradict or support 
the model, allowing clinicians to interpret and explain 
the predicted mortality.

Implementation

Aside from challenges in the development and vali-
dation, more challenges arise when implementing ML 
models in clinical practice. As mentioned before, ran-
domized prospective trials are essential to compare the 
accuracy of the survival prediction of a surgeon with or 
without the model. However, very few trials have been 
performed for predictive models in medicine and, to our 
knowledge, none to date in orthopedics or spine.61,69,74 
Additionally, ethical, legal, political, and administrative 
barriers must be overcome. Ethical concerns include lia-
bility in cases of medical error, doctors’ understanding 
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of how these models produce predictions, and patients’ 
understanding and control of how these models are used 
in their care.75 Moreover, issues of privacy, security, and 
management of patient data are important to consider.

CONCLUSION

A new health care age is being ushered in by the rapid 
advancement of AI and its applications in spinal oncol-
ogy. A myriad of new models are being developed, but 
the subsequent stages, quality of validation, transparent 
reporting, and implementation still need improvement. 
Moreover, we must acknowledge that these models are 
not a single means to an end. When interpreting these 
algorithms, we must always consider the context of the 
clinical question regarding the patient. It will be vital as 
we advance to regularly scan for potential dangers and 
ensure that patient benefit and safety continue to come 
first.
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