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ABSTRACT

Background: Artificial intelligence is gaining traction in automated medical imaging analysis. Development of
more accurate magnetic resonance imaging (MRI) predictors of successful clinical outcomes is necessary to better define
indications for surgery, improve clinical outcomes with targeted minimally invasive and endoscopic procedures, and

realize cost savings by avoiding more invasive spine care.
Objective: To demonstrate the ability for deep learning neural network models to identify features in MRI

DICOM datasets that represent varying intensities or severities of common spinal pathologies and injuries and to
demonstrate the feasibility of generating automated verbal MRI reports comparable to those produced by reading

radiologists.
Methods: A 3-dimensional (3D) anatomical model of the lumbar spine was fitted to each of the patient’s MRIs by

a team of technicians. MRI T1, T2, sagittal, axial, and transverse reconstruction image series were used to train

segmentation models by the intersection of the 3D model through these image sequences. Class definitions were
extracted from the radiologist report for the central canal: (0) no disc bulge/protrusion/canal stenosis, (1) disc bulge
without canal stenosis, (2) disc bulge resulting in canal stenosis, and (3) disc herniation/protrusion/extrusion resulting in

canal stenosis. Both the left and right neural foramina were assessed with either (0) neural foraminal stenosis absent, or
(1) neural foramina stenosis present. Reporting criteria for the pathologies at each disc level and, when available, the
grading of severity were extracted, and a natural language processing model was used to generate a verbal and written

report. These data were then used to train a set of very deep convolutional neural network models, optimizing for
minimal binary cross-entropy for each classification.

Results: The initial prediction validation of the implemented deep learning algorithm was done on 20% of the
dataset, which was not used for artificial intelligence training. Of the 17,800 total disc locations for which MRI images

and radiology reports were available, 14,720 were used to train the model, and 3560 were used to validate against. The
convergence of validation accuracy achieved with the deep learning algorithm for the foraminal stenosis detector was
81% (sensitivity¼ 72.4.4%, specificity¼ 83.1%) after 25 complete iterations through the entire training dataset (epoch).

The accuracy was 86.2% (sensitivity ¼ 91.1%, specificity ¼ 82.5%) for the central stenosis detector and 85.2%
(sensitivity ¼ 81.8%, specificity ¼ 87.4%) for the disc herniation detector.

Conclusions: Deep learning algorithms may be used for routine reporting in spine MRI. There was a minimal

disparity among accuracy, sensitivity, and specificity, indicating that the data were not overfitted to the training set. We
concluded that variability in the training data tends to reduce overfitting and overtraining as the deep neural network
models learn to focus on the common pathologies. Future studies should demonstrate the accuracy of deep neural
network models and the predictive value of favorable clinical outcomes with intervention and surgery.

Level of Evidence: 3.
Clinical Relevance: Feasibility, clinical teaching, and evaluation study.

Special Issue

Keywords: artificial intelligence, deep neural network learning, magnetic resonance imaging, spinal pathologies,
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INTRODUCTION

In the last 5 years, the development of artificial
intelligence (AI) has leapfrogged forward across
several industries, ranging from quality control in
various manufacturing areas to improved automa-
tion of production processes and enhanced diag-
nostics in medical applications.1 Examples include
voice and facial recognition,2,3 landmark localiza-
tion,4 autonomic driving,5–9 and a wide array of
medical imaging modalities.10–21 From a clinical
standpoint, demonstrating the application of AI and
its deep neural network learning algorithms is highly
relevant and timely due to the ongoing debate on
the necessity of advanced medical and surgical
intervention while costs are rising.22–25 Establishing
new diagnostic imaging criteria with higher sensi-
tivity, specificity, accuracy, and positive predictive
value for favorable clinical outcomes with proposed
interventions is considered by many to be key to the
development of next-generation patient-centered
and higher-quality health care service purchasing
strategies in general and for the endoscopic spinal
procedure in particular.26–31 Using AI in closing the
well-recognized diagnostic cap in routine lumbar
magnetic resonance imaging (MRI) scanning is one
such example.32 Extracting higher-quality diagnos-
tic value from the MRI scan is critical for successful
endoscopic spinal surgery because it relies heavily
on correctly identifying the pain generator respon-
sible for the patient’s symptoms.

The deployment of severity grading of traditional
subjective visual analysis of advanced cross-section-
al MRI imaging of the spine33–35 by the radiologist
not only leaves room for errors but has been shown
to lead to the omission of appropriate spine care,
which ultimately contributes to overuse in other
areas.36 Repetitive rounds of less-effective physical
therapy, interventional, and medical care often
provide only short-term pain relief and rarely
definitively address the patients’ disability because
the pain generator stemming from the underlying
structural abnormality of the spine has not been
fixed.37–43 As a result, the patients’ disabilities
continue and play out in their private and profes-
sional lives with decreased functional capacity due
to poorly controlled pain, lack of strength, coordi-
nation, or insufficient endurance.37–43 The cumula-
tive societal burden due to missed work, ongoing
use of medical services, and narcotic dependence44,45

is on the radar of every stakeholder in government
and the medical insurance and service industry.46,47

Out-of-control runaway costs will likely prompt
more rationing of medical services in general and
spine care in particular48–51 unless clinical evidence
is presented on how to realize cost savings with
technology advancements52–59 that produce more
impactful, targeted, and durable solutions for
patients that ultimately have the potential to flex
down the spending curve during a time in which the
demand for such spine care is expected to increase
significantly with generations of aging baby boom-
ers coming onto the Medicare rolls.60,61 More
accurate prognosticators of favorable clinical out-
comes with spine intervention and surgery are
critical to materializing such cost savings. The need
for such cost savings will likely also translate into
higher use of more targeted minimally invasive and
endoscopic spinal decompression and reconstructive
surgeries. To provide consistent clinical benefit,
identifying the primary pain generator is of utmost
importance, and applying routine MRI scanning
with higher-level accuracy will probably become
more relevant. Therefore, we investigated the
feasibility of using deep learning algorithms for
routine reporting in spine MRI with the ultimate
objective of improving its accuracy and predictive
value.

MATERIALS AND METHODS

The premise of this research and development is
based on the ability of deep learning neural network
models to identify features in MRI data that
represent varying intensities or severities of pathol-
ogies or injuries in patients.

Patients and Training Data

The training dataset used to develop the neural
network models includes lumbar MRI scans from
3560 patients, constituting a total of 17 800 levels.
The training data were obtained from 168 different
MRI imaging center locations around the United
States. The dataset included the disc levels L1-L2,
L2-L3, L3-L4, L4-L5, and L5-S1 for each patient.
The average age of the 3560 patients was 41.2 years,
with a standard deviation of 14.9 years. There were
46% male and 51.9% female patients. The remain-
ing 2.1% chose not to identify their gender. The
participating MRI imaging centers provided radiol-
ogy reports prepared and approved by board-
certified radiologists. Each radiologist was required
to present a reading for the presence or absence of
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annular bulging62 (circumferential, paracentral,
posterior), disc herniation63 (extrusion, protrusion,
sequestration, fragmentation), central canal steno-
sis33,64,65 (compromise of the thecal sac with
presence or absence of ventral epidural fat), and
foraminal stenosis66 (compromise of the left, right,
or both neural foramina and nerve roots) for each
intervertebral level. For algorithm development and
validation, various splits of the dataset were used to
ensure that the model was tested against cases that it
had not seen during training. Train-test percentages
of 70%–30%, 80%–20%, and 90%–10% were used
for various models.

Preparation of Training Data

It is essential to extract numerical training data
from the MRI imaging data. First, it is crucial to
identify the location of each vertebra and disc in the
patient’s lumbar spine in order. Lu et al67 proposed
the use of automated segmentation algorithms to
automate this process. In their approach, quadri-
laterals were drawn to encompass each vertebra
visible on the sagittal image. Segmented regions
were used to fit a spine curve and localize the centers
of each disc, and a series of sagittal and axial slices
from the area was used for training and predic-
tion.67 To extract the disc regions more accurately
and to extract the spinal cord profile, a three-
dimensional (3D) anatomical model of the lumbar
spine was fitted to each of the patient’s MRIs by a
team of technicians. The 3D model was fitted such
that the boundaries of the vertebrae, discs, and cord
line up with the respective boundaries in the MRI

images. Sagittal and axial slices were used as
reference (Figure 1a and b). The segmentation
results in a 3D anatomical model custom to each
patient’s lumbar spine (Figure 1c). This allows the
use of other MRI image series (for example, T1, T2,
sagittal, axial, and transverse reconstructions) to be
used to train segmentation models by the intersec-
tion of the 3D model through these image sequenc-
es. For each disc location, the following classes were
extracted from the radiologist report for the central
canal: (0) no disc bulge, protrusion, or canal
stenosis, (1) disc bulge without canal stenosis, (2)
disc bulge resulting in canal stenosis, and (3) disc
herniation, protrusion, or extrusion resulting in
canal stenosis. One of the following classes was also
extracted for each of the left and right neural
foramina: (0) neural foraminal stenosis absent, (1)
neural foramina stenosis present. An example is
shown in Table 1, in which the L3-L4 location in the
side-by-side comparison the radiologist read was
converted to class (3) for the central canal, (0) for
the left neural foramina, and (1) for the right neural
foraminal—which was matched by the algorithm
model.

Second, 2 approaches were taken to extract
manual radiologist reporting labels for the pathol-
ogies at each disc level and, when available, the
grading of severity. Similar to Lu’s DeepSPINE
model83, natural language processing (NLP) was
used to extract disc-level locations and pathologies
at each location. The NLP model was trained with
5000 manually labeled disc levels. One of the
following options was marked for the central canal
on the basis of the radiologist’s report: no signs of
abnormality, disc bulging without compromise of
the thecal sac, disc bulging compressing thecal sac
(central canal stenosis), or disc herniation com-
pressing thecal sac (central canal stenosis). One of
the following options was labeled for the neural
foramina as well: no signs of abnormality, left
foraminal stenosis, right foraminal stenosis, or
bilateral foraminal stenosis. For example, a report
finding that states ‘‘L4-L5: Broad-based posterior
disc herniation, best seen on sagittal T2 image #8/13
indenting thecal sac and causing mild narrowing of
bilateral neural foramina’’ is labeled as follows: disc
herniation compressing thecal sac (central canal
stenosis) and bilateral foraminal stenosis.

The NLP algorithm was run on all 17 800 disc
levels with radiology reports provided to generate
labeled training data for the pathology identification

Figure 1. Example of segmentation of vertebrae, intervertebral discs, and

dural sac on (a) sagittal and (b) axial MRI images and a corresponding (c)

segmented 3-dimensional anatomical model. MRI, magnetic resonance

imaging.
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deep learning algorithm. Due to known imperfec-

tions and accuracy of NLP algorithms, a semi-

supervised training process was adopted.

Semisupervised training algorithms have been used

to improve the accuracy of models when it is

unfeasible to prepare supervised training data due to

a large sample size or the complexity and labor

intensiveness of manually labeling data.68–70 The

training process included unsupervised training data

generated by the NLP algorithm for the entire

dataset along with the 5000 manually labeled and

curated labels prepared originally to train the NLP

algorithm. Furthermore, due to the tendency for

lumbar disc pathologies to be more common in the

lower lumbar motion segments, class imbalance was

handled by weighting model classes and mixing of

disc locations in the training data. Figure 2 depicts

the distribution of identified central canal stenosis in
the training data at each disc location. Suppressed
consistency loss was used as a regularization method
to increase robustness towards class imbalance at
different levels.71

Models and Architecture

The proposed algorithm operates in three high-
level stages. First, each sagittal and axial slice is
segmented using a semantic segmentation network
using the manually segmented 3D model. The
implemented method uses concepts from the one
hundred layers tiramisu network proposed by Jégou
et al.72 Segmented outputs similar to those in Figure
3a and b are generated for each sagittal and axial
slice in the MRI images. The segmented regions are
used to extract the disc centers and orientation
(using principal component analysis) for each disc
location from L5-S1 counting upward until L1-L2.
As proposed in the DeepSPINE model,67 stacks of
cropped sagittal and axial slices are extracted from
MRI images intersecting the disc. The segmented
spinal cord is also used to measure the canal midline
anterior-posterior (AP) diameter—an objective and
measurable metric. The second stage in the pipeline
uses 2 separate visual geometry group convolutional
networks73 trained with semisupervised methods on
cropped sagittal and axial MRI image stacks and
radiological findings labeled using NLP and man-
ually. The first network is used to detect and grade

Table 1. Exemplary side-by-side comparison of the verbal report generated by the algorithm with radiologist’s MRI report of the identical patient at disc levels L1-L2

through L5-S1.

Level Model Output Radiologist Report

L1-L2 No disc herniation, neurocompression, or neuroforaminal
stenosis is seen at this level.

There is a 1-mm midline disc bulge. There is no central canal
narrowing.

L2-L3 There is moderate posterior disc herniation of the
intervertebral disc impinging on the thecal sac. The spinal
canal midline AP diameter is 11.8 mm. This is best seen on
T2_FSE_TRS image slice No. 4. There is narrowing of the
neural foramina bilaterally.

There is a moderate degree of central canal narrowing. There
is a posterior annular tear. There is a 3-mm circumferential
disc protrusion resulting in abutment of the descending L3
nerve roots bilaterally as well as abutment of the exiting
right and left L2 nerve roots.

L3-L4 There is posterior disc herniation of the intervertebral disc
impinging on the thecal sac. The spinal canal midline AP
diameter is 12.7 mm. This is best seen on T2_FSE_TRS
image slice No. 9. There is narrowing of the right neural
foramina with abutment of the exiting right nerve root.

There is a moderate degree of central canal narrowing. There
is a 2-mm right foraminal disc protrusion with abutment of
the exiting right L3 nerve root and mild narrowing of the
right neural foramen.

L4-L5 There is posterior annular bulging seen compressing the
thecal sac, resulting in central canal stenosis. The spinal
canal midline AP diameter is 15.9 mm. This is best seen on
T2_FSE_TRS image slice No. 16. There is narrowing of the
neural foramina bilaterally.

There is mild central canal narrowing. There is a 2-mm right
foraminal disc protrusion resulting in mild abutment of the
exiting right L4 nerve root with mild narrowing of the right
neural foramen.

L5-S1 There is posterior disc herniation of the intervertebral disc
impinging on the thecal sac. The spinal canal midline AP
diameter is 19.2 mm. This is best seen on T2_FSE_TRS
image slice No. 23. There is narrowing of the neural
foramina bilaterally.

There is a 1-mm midline disc bulge with mild effacement of
the anterior thecal sac. There is no central canal narrowing.
The height of the right neural foramen is 19 mm and the
height of the left neural foramen is 17 mm.

Abbreviations: AP, anterior-posterior.

Figure 2. Positive and negative identifications of central canal stenosis at

each disc level.
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central canal stenosis, and the second to identify
foraminal stenosis on the left and right neural
foramen. The final stage compiles the predictions
into a summary similar to that presented by
radiologists and used to train the models. Simple
decision trees are used to compile the summary.
Differences in radiologist terminology and stan-
dards for detecting and grading stenosis affect the
algorithm only minimally due to the same nomen-
clature and terminology used in the training data. A
series of convolutional neural networks trained with
gradient descent algorithms with dice loss coeffi-
cients and spatial dropout prevents overtraining to
the dataset and enforces the network models (the
RadBot) to identify defining features that result in
diagnosis and grading. The same also enforces the
network to ignore differences between radiologist
terminology. Figure 4 depicts the high-level stages
of the proposed algorithm, arriving at a printed
MRI report generated by these deep learning
algorithms.

RESULTS

We compared the reports generated by these AI
segmentation algorithms to select representative
image sections and had the radiologist on our team
review the images to confirm the AI read and to
compare it with the radiologist report provided by
the participating MRI centers. Figure 5a and b is an
example diagnostic assessment using the algorithm
that is known to have no disc bulging, no central
canal stenosis, and no foraminal narrowing. The
algorithm reported no canal stenosis and no neural
foraminal stenosis, thus matching the known
radiologist’s reporting. The algorithm-generated
report summary was ‘‘L1-L2: No disc herniation,
neuro-compression, or neuroforaminal stenosis is
seen at this level.’’ Figure 5c and d is an example
diagnostic assessment using the algorithm in which
the training radiologist labeled the disc to have a
posterior disc protrusion abutting the thecal sac and
compromising the neural foramina bilaterally. In
comparison, the deep learning algorithm reported
‘‘There is posterior herniation of the intervertebral
disc impinging on the thecal sac, best seen on
T2_FSE_TRS (FSE¼fast spin echo) series image #4.
The spinal canal midline AP diameter is 10 mm.
There is narrowing of the neural foramina bilater-
ally.’’ As demonstrated in these 2 examples, the
algorithm also indicated the image slice in which the
pathology was best demonstrated and reported the
measured spinal canal diameter at the affected level.

We used the initial results of the prediction and
validation of the implemented deep learning algo-
rithm on the 20% of the dataset that was not used
for the AI training. Of the 17,800 total disc locations
for which MRI images and radiology reports were
available, 14,720 were used to train the model, and

Figure 3. Representative (a) sagittal and (b) axial segmentation predictions of

lumbar spine matching patient’s MRI images in Figure 1. MRI, magnetic

resonance imaging.

Figure 4. High-level architectural diagram of the implemented deep learning algorithm used to generate automated MRI reports. MRI, magnetic resonance imaging.

Artificial Intelligence Learning in Lumbar Spine MRI

International Journal of Spine Surgery, Vol. 14, Supplement 3 S90
 by guest on June 17, 2025https://www.ijssurgery.com/Downloaded from 

https://www.ijssurgery.com/


3560 were used to validate against. Separate models
were developed and trained for the identification of
each diagnosis and class: generalized disc bulging,
canal stenosis, disc herniation, and foraminal
stenosis. The bilateral neuroforamina were assessed
independently for stenosis affecting the left and
right nerve roots. Therefore, twice as many data
points were available to train the foraminal stenosis
detector model. The loss functions used to minimize
in each model was binary cross-entropy, also known
as the log loss function.

Hp qð Þ ¼ � 1

N

XN

i¼1
yi � log p yið Þð Þ þ 1� yið Þ

� log 1� p yið Þð Þ:

Each model was trained for 25 epochs, during
which the convergence of binary validation accuracy
was observed. Figure 6a is a plot depicting the
convergence of validation accuracy achieved with
the deep learning algorithm to approximately 81%
for the foraminal stenosis detector. The optimiza-
tion, however, was for the above-mentioned binary
cross-entropy loss function. Figure 6b is a plot
depicting the convergence of the binary cross-
entropy loss across the 25 epochs (an epoch is 1
complete iteration through the entire training data-
set) on the foraminal stenosis detector with increas-
ing accuracy. At the end of each epoch, the binary
cross-entropy loss was calculated and stochastic
gradient descent optimization was used to compute
changes to deep neural network model weights to
minimize the loss. We observed from the plots that

the binary training accuracy continued to increase,

whereas the validation accuracy converged to

roughly 81% for the foraminal stenosis detector

(sensitivity ¼ 72.4.4%, specificity ¼ 83.1%). The

convergence of the validation accuracy was appar-

ent after just 5 training epochs. Any gain in training

accuracy observed past the validation accuracy

convergence was due to overfitting to specific

radiology reads and methods; however, these did

not affect the overall validation accuracy. Spatial

dropouts and other techniques were implemented to

minimize overfitting to the specific training dataset.

Binary accuracy, test sensitivity, and specificity were

recorded for each model on the basis of the results

from validating against 20% of the complete data-

set; these are summarized in Table 2. The accuracy

for the central stenosis detector was 86.2% (sensi-

tivity¼ 91.1%, specificity¼ 82.5%) and for the disc

herniation detector, 85.2% (sensitivity ¼ 81.8%,

specificity¼ 87.4%).

Figure 5. Exemplary L1-L2 MRI (a) sagittal and (b) axial images used for

diagnostic assessment with the segmentation algorithm on levels known to have

no disc bulging, no central canal stenosis, and no foraminal narrowing. Another

example L1-L2 MRI (c) axial and (d) sagittal images of a diagnostic assessment

using the segmentation algorithm in which the training radiologist labeled the

disc to have a posterior disc protrusion abutting the thecal sac and

compromising the neural foramina bilaterally.

Figure 6. Graphic depiction of training convergence of the foraminal stenosis

detector. In the top panel (6a), the x-axis is the number of training steps and the

y-axis is the binary accuracy. The bottom panel (6b) shows a plot of binary

cross-entropy (y-axis) versus number of training steps (x-axis). The binary

cross-entropy is used to estimate error between the radiologist reads and the

artificial intelligence predictions. Hence, decreasing binary cross-entropy is

associated with desired accuracy gains.
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DISCUSSION

The need for more accurate prognosticators of
favorable clinical outcomes with lumbar spinal
surgery prompted us to investigate the feasibility
of using deep learning algorithms for routine
reporting in spine MRI. The need for accurate
prognosticators of favorable clinical outcomes has
been recognized by the North American Spine
Society (NASS), which discussed this need in several
of its consensus treatment guidelines for common
spine problems.74,75 The organization provided an
in-depth review of the existing literature and graded
the clinical evidence by comparing preoperative
MRI findings with intraoperative observations
directly visualized by the surgeon in open spine
surgeries. Thus, vetted and validated sensitivity and
specificity numbers ranging between the 60th and
70th percentiles and serving as industry benchmarks
for most common spine problems were estab-
lished.74,75 One consequential example of the poor
diagnostic value of routine lumbar MRI scans is
missed injury to the posterior longitudinal ligament
complex in thoracolumbar fractures in patients with
acute injury. The integrity of this vital, stabilizing
ligamentous complex typically triggers nonoperative
care with bracing,76 whereas injury triggers surgical
fixation with spinal fusion74,75; an algorithm that
calls for 2 vastly different treatments, when used
erroneously, has tremendous unintended down-
stream consequences that nearly always translate
into an ongoing need for care and higher cost.
Another such example is herniated disc. A high
percentage of asymptomatic, healthy volunteers
were found to have disc herniations at multiple
lumbar levels,77 calling into question the positive
predictive value of the lumbar MRI scan in patients
with painful acute injuries or degenerative abnor-
malities.36,78 In a nutshell, the lumbar MRI scan
delivers little information with respect to the leading
pain generator. The high false negative rate among
patients with sciatica-type back and leg pain is on
the order of 30%,78 and yet the radiologists lacking

relevant clinical context of the spine care at the time
it is delivered—willingly and knowingly or not—
find themselves in the middle of the medical
necessity controversy when it comes to determining
the need for treatment.43 What is evident is that
there is a tremendous need to improve the accuracy
of the interpretation of the MRI scan, particularly
when it comes to the application of small, targeted,
minimally invasive and endoscopic surgeries that
aim to treat only the most relevant pain genera-
tor.38,79,80 Higher preoperative diagnostic accuracy
is at the center of making these less burdensome and
more cost-effective advanced, highly targeted endo-
scopic outpatient surgical procedures work.46,81,82

Currently, the accuracy of the lumbar MRI scan
report in predicting acceptable levels of clinical
success with spinal decompression surgery can be
raised only with the addition of other ancillary tests,
such as a lidocaine-containing transforaminal epi-
dural steroid injection.32,83–86

In an attempt to improve the diagnostic value of
the lumbar MRI scan, a uniform nomenclature of a
herniated disc and spinal stenosis was proposed and
published.87 Clear definitions of bulging or herniat-
ed disc or disc protrusions were given to avoid the
interchangeable and indiscriminate use of these
terms without attention to detail or their clinical
relevance. Several radiographic classification sys-
tems of lumbar spinal stenosis in the central canal,
lateral recess, or neuroforamina have been pub-
lished that clearly delineate the image-based criteria
for neural element compression.33–35,87,88 However,
the dichotomy between radiological assessment of
painful spine conditions and successful clinical
protocols continues because current MRI reporting
mainly reduces spine pain to only the assessment of
mechanical encroachment of neural elements, insta-
bility, and degeneration of the intervertebral disc or
facet joints.36 Any other of the many documented
and validated additional lumbar pain generators
that arise from inflammation, scarring, adhesions,
or tethering of spinal nerves are typically not
accounted for.38,89,90 This lack of detail in the
conventional MRI reporting provided by the
radiologist and how it relates to the relevant clinical
context motivated us to go beyond traditional
subjective visual image interpretation and prompted
us to look into the deployment of modern AI to
reduce the waste and improve patient outcomes in
modern spine care. Therefore, we investigated the
feasibility of using deep neural network self-learning

Table 2. Validation results showing accuracy, sensitivity, and specificity for

each segmentation model.

Detector Model Accuracy, % Sensitivity, % Specificity, %

Bulging 84.9 89.4 81.2
Canal stenosis 86.2 91.1 82.5
Disc herniation 85.2 81.8 87.4
Foraminal stenosis 81.0 72.4 83.1

Artificial Intelligence Learning in Lumbar Spine MRI
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algorithms to provide written reports that not only
could be increasingly more accurate and consistent
with traditional verbal reads produced by a
radiologist but would improve upon the current
industry standards.

The results of this feasibility study of 3560
lumbar MRI scans and 17,800 levels shows that the
model report generated by the network models (the
RadBot) was capable of producing a verbally
spelled-out report by a specific lumbar spinal level
comparable in detail as to what is typically seen by
the radiologist in terms of detail and scope. From
training using 14,240 disc locations across 25
epochs and validating against 3560 disc locations,
we observed that the accuracy, sensitivity, and
specificity metrics are consistently higher than 85%
for the central canal compression detectors. De-
spite training against double the number of neural
foramina (left and right nerve roots), the ability of
the model to accurately match foraminal stenosis
detection to those from radiologist reads is less
than that of central canal compression. This can be
due to a few possible reasons—due to the more
complex 3D volumetric shape of the neuroforami-
na and of the nerve roots as compared with the
posterior section of the disc and central canal,
which are much larger in comparison. Variability
in the training reads resulting in differences with
the stenosis indicators radiologists use to describe
the diagnosis of neural foraminal stenosis may also
be another limitation of the RadBot in its current
modeling algorithm that we may wish to overcome
with additional training of the RadBot if a clinical
need arises. The overall accuracy of 81% with the
MRI reporting may have several explanations.
Still, the most obvious one is that the deep learning
network model’s accuracy may not exceed 81%
with the current manually segmented 3D models.
Redefining this manual segmentation to common
clinically relevant painful entities of the lumbar
spine may improve the accuracy. Another problem
that may reside in the underlying DICOM datasets,
often obtained on 1.5-T scanners, which are too
noisy. Moreover, an 81% accuracy for across-the-
board RadBot reading of lumbar spine MRI scans
obtained in our feasibility study is approximately
15% higher than the published interobserver and
intraobserver reliability rates obtained on routine
reports provided by radiologists on the same
scan.91–99 Despite these limitations, the RadBot
was able to give the printed MRI report in

approximately 8 to 10 minutes, which in today’s
health care cost-savings context may save time and
prevent overuse owing to improved reporting
standards. Future studies will have to demonstrate
the reliability of the RadBot readings with j
analysis of agreement between the RadBot and
the MRI reports provided by a radiologist.

CONCLUSIONS

We demonstrated the feasibility of using deep
learning algorithms for routine reporting in spine
MRI. We found the minimal disparity among
accuracy, sensitivity, and specificity, which indicated
first that the data were not being overfitted to the
training set, and second that the frequency of false
negatives and false positives were both consistent
and low compared with the true positives and true
negatives. In addition, variability in the training
data tended to reduce overfitting and overtraining
as the deep neural network models learned to focus
on the common indicators and ignore differences. In
future studies, we will focus on providing RadBot
reliability data in correlation with painful entities in
patients with spinal injuries and degenerative
conditions of the lumbar spine, with the ultimate
objective of improving its accuracy and predictive
value of favorable clinical outcomes with interven-
tion.
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