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de Columna. Bogotá, Colombia, Centro de Cirugı́a de Mı́nima Invasión, CECIMIN—Clı́nica Reina Sofı́a, Bogotá, Colombia, 7Multus Medical, LLC, Phoenix,
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ABSTRACT

Background: Artificial intelligence could provide more accurate magnetic resonance imaging (MRI) predictors of
successful clinical outcomes in targeted spine care.

Objective: To analyze the level of agreement between lumbar MRI reports created by a deep learning neural

network (RadBot) and the radiologists’ MRI reading.
Methods: The compressive pathology definitions were extracted from the radiologist lumbar MRI reports from 65

patients with a total of 383 levels for the central canal: (0) no disc bulge/protrusion/canal stenosis, (1) disc bulge without
canal stenosis, (2) disc bulge resulting in canal stenosis, and (3) disc herniation/protrusion/extrusion resulting in canal

stenosis. For both, neural foramina were assessed with either (0) neural foraminal stenosis absent or (1) neural foramina
stenosis present. Reporting criteria for the pathologies at each disc level and, when available, the grading of severity
were extracted, and the Natural Language Processing model was used to generate a verbal and written report. The

RadBot report was analyzed similarly as the MRI report by the radiologist. MRI reports were investigated by
dichotomizing the data into 2 categories: normal and stenosis. The quality of the RadBot test was assessed by
determining its sensitivity, specificity, and positive and negative predictive value as well as its reliability with the

calculation of the Cronbach alpha and Cohen kappa using the radiologist MRI report as a gold standard.
Results: The authors found a RadBot sensitivity of 73.3%, a specificity of 88.4%, a positive predictive value of

80.3%, and a negative predictive value of 83.7%. The reliability analysis revealed the Cronbach alpha as 0.772. The

highest individual values of the Cronbach alpha were 0.629 and 0.681 when compared to the MRI report by the
radiologist, rending values of 0.566 and 0.688, respectively. Analysis of interobserver reliability rendered an overall
kappa for the RadBot of 0.627. Analysis of receiver operating characteristics (ROC) showed a value of 0.808 for the
area under the ROC curve.

Conclusions: Deep learning algorithms, when used for routine reporting in lumbar spine MRI, showed excellent
quality as a diagnostic test that can distinguish the presence of neural element compression (stenosis) at a statistically
significant level (P , .0001) from a random event distribution. This research should be extended to validated and

directly visualized pain generators to improve the accuracy and prognostic value of the routine lumbar MRI scan for
favorable clinical outcomes with intervention and surgery.

Level of Evidence: 3.

Clinical Relevance: Validity, clinical teaching, and evaluation study.

Special Issue

Keywords: artificial intelligence, deep neural network learning, magnetic resonance imaging, spinal pathologies,
reliability analysis

INTRODUCTION

Minimally invasive and endoscopic transforami-

nal decompression techniques have become popular

in spinal surgery due to technological advances.1–6

There has been a substantial increase in the number

of these types of procedures being carried out in

ambulatory surgery centers.7 The advantages of
endoscopic transforaminal decompression are fewer
postoperative complications, a shorter interval for
return to work and social reintegration,2,8–11 faster
postoperative narcotic independence, and an overall
reduced utilization of painkillers.2,12 The latter
problem is of significance in light of the opiate
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abuse epidemic in the United States,13 more
rigorous medical necessity assessment,14 and a
demand for value-based health care measures to
serve the aging baby-boomer population.13–15 In
this context, a conclusive preoperative diagnostic
work-up of lumbar radiculopathy is crucial, as
decompression is often limited to a small area of 1
affected neuroforamen and lateral recess.16–18

In this article, the authors report on the
feasibility of using a deep learning algorithm for
routine reporting in spine magnetic resonance
imaging (MRI). The ultimate objective of this
research is to improve the accuracy and predictive
value of the MRI scan when applied to the
preoperative planning of targeted minimally inva-
sive and endoscopic spinal surgeries. These target-
ed procedures often ignore the majority of
pathologies reported on routine lumbar MRI scans
of patients with injuries or degenerative conditions
of the spine and focus treatment only on the
validated painful pathologies. The preoperative
MRI scan is an integral part of the diagnostic
work-up besides history, physical examination,
electrodiagnostic studies, and confirmative diag-
nostic spinal injections.15–19 The need to improve
the diagnostic accuracy of the routine MRI scan
has been well recognized by surgeons who reported
on the correlation between intraoperatively ob-
served findings as gold standard references and
reflected on the use of the MRI scan as a predictor
of the need for appropriate treatment and its
clinical outcomes.20–24 The MRI scan, in many
respects, has become the ultimate gatekeeping test
in the medical necessity determination of many
spinal surgeries. Diagnostic inaccuracies related to
false-negative diagnoses, therefore, have a signifi-
cant impact on patient care and often lead to
overutilization in other subspecialties of spine care,
such as pain management. From a cost-benefit
point of view, these inappropriate points-of-care
interactions often translate into wasted treatments
if considered ineffective by patients who continue
to look for care but should be treated definitively
by addressing the structural problems associated
with their primary spinal pain generator. There-
fore, improving the value of the MRI scan as a
predictor of clinical outcomes with appropriate
surgical treatments is not only central but also
critical to applying the value-based approach to
spine care. In this study, the authors report on the
results of the sensitivity, specificity, and positive

and negative predictive value; Cronbach alpha
reliability; and interobserver Cohen kappa analysis
of MRI reports produced by deep learning neural
network algorithms when compared to routine
reporting provided by the radiologist.

MATERIALS AND METHODS

The premise of this research and development is
based on the ability for deep learning neural
network models to identify features in MRI data
that represent varying intensities or severities of
degenerative pathologies or injuries in patients. The
feasibility of this artificial intelligence (AI) approach
was demonstrated in another study included in this
journal’s special focus issue. In this investigation,
the same team of authors is now reporting on the
statistics of the accuracy and reliability analysis with
the AI approach to lumbar MRI reporting, which
was considered the gold standard for the compar-
ison analysis. All patients in this consecutive case
series provided informed consent, and institutional
review board approval was obtained (CEIFUS 106-
19). Written informed consent was obtained from
the patient for publication of this report and any
accompanying images.

Patients and Training Data

The deep learning neural network models ana-
lyzed 65 lumbar MRI scans from the same number
of patients, comprising a total of 383 levels. The
DICOM data were ordered by the first author and
were obtained from 1 MRI imaging center in
patients with painful lumbar degenerative spine
disease or injuries. The data set included the disc
levels T12–L1, L1–L2, L2–L3, L3–L4, L4–L5, and
L5–S1 for each patient. The average age of the 65
patients was 42.2 years with a standard deviation of
11.8 years. There were 51.5% male and 48.5%
female patients. The MRI imaging centers provided
radiology reports prepared and approved by board-
certified radiologists. Each radiologist was required
to present a reading for the presence or absence of
annular bulging25 (circumferential, paracentral,
posterior), disc herniation26 (extrusion, protrusion,
sequestration, fragmentation), central canal steno-
sis27–29 (compromise of the thecal sac with presence
or absence of ventral epidural fat), and foraminal
stenosis30 (compromise of the left, right, or both
neural foramina and nerve roots) for each interver-
tebral level.
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Extraction of MRI Data

For each disc location, the following classes were
extracted from the radiologist report for the central
canal: (0) no disc bulge/protrusion/canal stenosis,
(1) disc bulge without canal stenosis, (2) disc bulge
resulting in canal stenosis, and (3) disc herniation/
protrusion/extrusion resulting in canal stenosis. One
of the following classes was also extracted for each
of the left and right neural foramina: (0) neural
foraminal stenosis absent or (1) neural foraminal
stenosis present. An example is shown in Table 1,
where at the L3–L4 location in the side-by-side
comparison, the radiologist read was converted to
class (3) for the central canal, (0) for the left neural
foramina, and (1) for the right neural foraminal and
matched by the algorithm model. For the purpose of
the reliability analysis, these findings were dichoto-
mized into 2 simple categories: normal and stenosis.

Statistical Analysis

For the clinical outcome analysis, descriptive
statistics (mean and standard deviation), cross-
tabulation statistics of sensitivity, specificity, posi-
tive and negative predictive value, and measures of
association were computed for 2-way tables using
IBM SPSS Statistics software (version 27.0). The
Pearson v2 and the likelihood-ratio v2 tests were
used as statistical measures of association. The
Multus RadBot MRI sensitivity of accurately
grading and detecting symptomatic nerve root
compression (true positive rate) (TP) was calculated
on the basis of the grading by the board-certified
radiologist as the percentage of patients (MRI
positives) among the stenosis patients who were
correctly identified by the Multus RadBot as having
symptomatic neural compression confirmed by a
board-certified radiologist. False negatives (FN)
were patients with neural compression identified
by the radiologist whose Multus RadBot MRI

grading was negative for stenosis (MRI negatives).
Therefore, diagnostic Multus RadBot MRI sensi-
tivity for predicting a successful clinical outcome
from endoscopic transforaminal decompression
procedure was calculated as follows:

MRI positives by radiologist reporting TPð Þ
TPþMultus RadBot MRI negative FNð Þ

The Multus RadBot MRI specificity (true nega-
tive [TN] rate) of accurately detecting the absence of
symptomatic nerve root compression as demon-
strated by the radiologist’s MRI reading was
calculated as the percentage of patients correctly
identified as not having symptomatic neural com-
pression. False positives (FP) were defined as
Multus RadBot MRI positives without the radiol-
ogist having identified the neural compression.
Therefore, diagnostic Multus RadBot MRI speci-
ficity of predicting a neural element compression
was calculated as follows:

MRI negatives without compression

by radiologist TNð Þ
TNþMultus RadBot MRI positives without

radiologist reading compression FPð Þ

The positive and negative predictive values of the
Multus RadBot reading of the lumbar MRI scan for
agreeing with the reading of the board-certified
radiologist with the presence or absence of com-
pressive pathology (normal or stenosis) were calcu-
lated as follows:

MRI positives with compressive pathology

reported by the radiologist

TPþ FP Multus RadBot MRI positives without

compressive pathology reported by radiologist

¼ TP

TPþ FP

Intraobserver reliability between the reading
provided by the radiologist and the neural network
deep learning algorithm (Multus RadBot) was done
by Cronbach alpha computation and Cohen kappa
analysis as a measure of agreement between the
radiologist’s grading of the lumbar MRI scan and
the Multus RadBot’s assessment of foraminal and
central stenosis. The Cohen kappa was calculated
from the observed and expected frequencies on the
diagonal of a square contingency table. The overall
quality of the Multus RadBot algorithm as a
diagnostic test was assessed with the receiver

Table 1. Level distribution of spinal disc spaces read by the radiologist and AI

deep network learning.

Disc Level

Level Distributions
Cumulative

PercentFrequency Percent Valid Percent

T12–L1 63 16.4 16.4 16.4
L1–L2 64 16.7 16.7 33.1
L2–L3 64 16.7 16.7 49.8
L3–L4 64 16.7 16.7 66.5
L4–L5 64 16.7 16.7 83.2
L5–S1 64 16.7 16.7 100
Total 383 100.0 100.0

Abbreviation: AI, artificial intelligence.

Reliability of Deep Learning Algorithms for Reporting of Lumbar MRI Scans
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operating characteristics (ROC) with determination
of the area under the curve employing the left-
upper-corner method using a dichotomization
protocol of classifying MRI scan readings per
intervertebral disc level as either normal or stenot-
ic.31–34 The confidence intervals for the likelihood
ratios were calculated using the ‘‘log method.’’35,36

RESULTS

The level frequency distribution observed in the
65 patients is summarized in Table 1. The radiolo-
gist detected the presence of neural element com-
pressive pathology (stenosis) in 60.6% of scanned
levels, whereas the Multus RadBot AI algorithm
determined the presence of stenosis in 64.2%, of
scanned levels (Tables 2 and 3). As listed in Table 4,
the most common levels reported as stenotic by the
radiologist were L2–L3 (79.7%), L3–L4 (79.7%),
and L4–L5 (77.8%). The frequency distribution
read out by the Multus RadBot (Table 5) was
similar, with some variation at L2–L3 (59.4%), L3–
L4 (87.5%), and L4–L5 (93.8%), suggesting that
pathology at the L2–L3 level was underdiagnosed
versus overdiagnosed at the L4–L5 level. These
differences were statistically significant (P , .0001).
The ROC analysis showed a value of 0.808 for the
area under the ROC curve (AUC), indicating that
the Multus RadBot is an excellent diagnostic test
that can detect the presence of neural element
compression (stenosis) at a statistically significant
level (P , .0001) from a random event distribution
(Figure).

The cross tabulation between the Multus RadBot
and radiologist’s readings of the lumbar MRI scan
using the radiologist’s report as a gold standard
revealed a Multus RadBot sensitivity of 73.3%, a
specificity of 88.4% (Table 6), a positive predictive
value of 80.3%, and a negative predictive value of
83.7% (Table 7), with all the differences in these 2
cross tabulations being statistically significant. The
reliability analysis revealed the Cronbach alpha as
0.772. When cross tabulated by intervertebral disc
level differences, in reliability by level were found
(Table 8). Through a process of elimination, it was
determined that Multus RadBot’s performance was
most reliable at the L2–L3 and L3–L4 levels with the
highest individual values for the Cronbach alpha of
0.629 and 0.681 when compared to the MRI report
by the radiologist, rending values of 0.566 and 0.688,
respectively (Table 8). Kappa analysis of interob-
server reliability rendered an overall kappa for the
Multus RadBot of 0.627, suggesting that the Multus
RadBot AI algorithm performed at a high reliability
level (Table 9). Again, the diagnostic recognition of
the Multus RadBot was the most reliable at the L2–
L3 and L3–L4 levels on kappa analysis, showing
kappa values of 0.738, and 0.606, respectively.

DISCUSSION

The results of this study highlighted a small
‘‘difference in opinion’’ in the interpretation of

Table 2. Frequency distribution stenosis as read by the radiologist.

Finding

Original MRI Report by Radiologist
Cumulative

PercentFrequency Percent Valid Percent

Normal 150 39.2 39.3 39.3
Stenosis 232 60.6 60.7 100.0
Total 382 99.7 100.0
Missing 1 .3
Total 383 100.0

Abbreviation: MRI, magnetic resonance imaging.

Table 3. Frequency distribution stenosis as read by AI deep network learning.

Finding

RadBot AI Deep Learning

Network MRI Reading
Cumulative

PercentFrequency Percent Valid Percent

Normal 137 35.8 35.8 35.8
Stenosis 246 64.2 64.2 100.0
Total 383 100.0 100.0

Abbreviations: AI, artificial intelligence; MRI, magnetic resonance imaging.

Table 4. Frequency distribution of normal versus stenosis diagnosis as read

by the radiologist.

Disc Level

MRI Report as Read by the

Radiologist, n

(% Reported Within the Level) Total, n

(% Reported

Within the Level)Normal Stenosis

T12–L1 36 (56.3) 28 (43.8) 64 (100.0)
L1–L2 24 (37.5) 40 (62.5) 64 (100.0)
L2–L3 13 (20.3) 51 (79.7) 64 (100.0)
L3–L4 13 (20.3) 51 (79.7) 64 (100.0)
L4–L5 14 (22.2) 49 (77.8) 63 (100.0)
L5–S1 50 (79.4) 13 (20.6) 63 (100.0)
Total 150 (39.3) 232 (60.7) 382 (100.0)

Abbreviation: MRI, magnetic resonance imaging.

Table 5. Chi-square tests for frequency distribution of normal versus stenosis

diagnosis as read by the radiologist.

Value df
Asymptotic S

ignificance (2-Sided)

Pearson chi-square 77.257a 5 .000
Likelihood ratio 79.333 5 .000
N of valid cases 382

a0 cells (0.0%) have expected count less than 5. The minimum expected count is
24.74.

Lewandrowski et al.
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routine lumbar MRI scans between the radiologist’s

report and AI deep neural network learning

algorithm. While it is unclear whether the observed

discrepancies arose out of the AI or the radiologist’s

reporting, it is obvious to see how such reporting

discrepancies may impact patient selection for

targeted spinal procedures, such as the endoscopic

transforaminal surgery. As the determination of

medical necessity in injured patients and in patients

with painful degenerative conditions of the spine

today hinges frequently on the exact verbatim

reading in the MRI report, revisiting the accuracy

of the MRI scan is of high relevance to patients and

their physicians alike. False-positive readings may

subject the patient to unwanted or unneeded

treatments at high expense, and false-negative
interpretations may deny justified care. The conse-
quences of this diagnostic dilemma play out every
day, affecting individualized spine care of those
patients with an estimated 2.06 million episodes of
low back injury per year in the United States.37

The authors purposely chose a simplified way of
analyzing the level of agreement between our AI and
the radiologist’s MRI reading by applying the
following assumptions: (1) the MRI report by the
radiologist was employed as the gold standard in
this reliability and accuracy analysis, and (2) the
authors categorized the MRI findings in a straight-
forward 2-category manner (normal anatomy or
stenosis present) to facilitate the study of the AI
algorithm’s performance as a diagnostic test by
employing accepted statistical methods of chi-
square testing to determine the sensitivity, specific-
ity, positive and negative predictive value, the
overall test reliability with the ROC and AUC
method or the calculations of the Cronbach alpha
and Cohen kappa. The numbers obtained with these
methods suggest that the our AI deep learning
network as a diagnostic tool has excellent perfor-
mance characteristics. Typically, Cohen kappa
values of 0.6 and alpha over 0.7 and ROC values
higher than 0.8 are considered the hallmarks of a
highly useful diagnostic test.38,39 It is not entirely
clear to the authors why our AI deep learning neural

Figure. Area under the curve data ¼ 0.808; SE ¼ 0.025; asymptotic

significance , 0.0001; asymptotic 95% confidence interval, lower bound ¼
0.760; upper bound ¼ 0.857. Coordinates of the curve for artificial intelligence

sensitivity ¼ 0.884; 1� specificity ¼ 0.267.

Table 6. Frequency distribution of normal versus stenosis diagnosis as read

by RadBot.

Disc Level

RadBot AI Deep Learning Network Reading

TotalNormal Stenosis

T12–L1 59 (93.7) 4 (6.3) 63 (100.0)
L1–L2 40 (62.5) 24 (37.5) 64 (100.0)
L2–L3 26 (40.6) 38 (59.4) 64 (100.0)
L3–L4 8 (12.5) 56 (87.5) 64 (100.0)
L4–L5 4 (6.3) 60 (93.8) 64 (100.0)
L5–S1 0 (0.0) 64 (100.0) 64 (100.0)
Total 137 (35.8) 246 (64.2) 383 (100.0)

Abbreviation: AI, artificial intelligence.

Table 7. Chi-square tests for frequency distribution of normal versus stenosis

diagnosis as read by RadBot.

Value df
Asymptotic

Significance (2-Sided)

Pearson chi-square 187.425a 5 .000
Likelihood ratio 220.410 5 .000
N of valid cases 383

a0 cells (0.0%) have expected count less than 5. The minimum expected count is
22.54.

Table 8. Sensitivity and specificity of RadBot AI read versus MRI read by

radiologist.

RadBot

Radiologist MRI Read

TotalNormal Stenosis

Normal
Count 110 27 137
% sensitivity within MRI scan 73.3 11.6 35.9

Stenosis
Count 40 205 245
% specificity within MRI scan 26.7 88.4 64.1

Total
Count 150 232 382
% within MRI scan 100.0 100.0 100.0

Abbreviations: AI, artificial intelligence; MRI, magnetic resonance imaging.

Reliability of Deep Learning Algorithms for Reporting of Lumbar MRI Scans
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network was most accurate at the L2–L3 and L3–L4
levels. The most reasonable explanation is that
pathologies at the other levels, but particularly at
the L4–L5 level, are much more common, thus
contributing to more significant variability in how
these pathologies are read by the radiologist or
interpreted by the Multus RadBot.

The authors are entirely aware of the limitation of
their simplified statistical analysis by assuming that
the MRI report provided by the reading radiologist
was flawless. The authors could have chosen to have
the radiologist’s report reread by another 1 or 2
radiologists to incorporate that in the reliability
discussion. However, the authors purposely decided
against it so as not to create an artificial scenario
that does not exist in the ‘‘real world,’’ where
routine lumbar MRI scans are read by 1 board-
certified radiologist with little additional scrutiny.
Clinical decision making affecting individual pa-
tients’ lives are made like that every day. Therefore,
the authors did not want to deviate from their
simple side-by-side, Multus RadBot versus radiolo-
gist analysis approach. It goes without saying,
though, that MRI raters on all sides of the medical
necessity equation may use different radiological
classification systems during the preoperative and
diagnostic decision algorithms.15,29,40,41 The first

author has demonstrated this clinical dilemma
affecting hundreds of his patients who were
classified by the radiologist as false negatives but
ultimately underwent successful transforaminal en-
doscopic decompression with excellent and good
Macnab outcomes in over 88.3% of patients.23 In
his study of 1839 patients, the first author found a
diagnostic gap of approximately 18% (330 pa-
tients),24 which initially led to the denial of
appropriate spine care by the patients’ medical
insurance. However, patients who persevered even-
tually underwent seemingly inappropriate endo-
scopic surgical decompression for their sciatica,
back, and leg pain with a 94.6% success rate.23 This
type of spine care, deemed as medically not
necessary based on traditional image-based clinical
decision criteria done in patients responsive to
successful endoscopic decompression, stimulated
the authors of this study to look further into
improving the preoperative diagnostic process in
patients with sciatica due to herniated disc or
stenosis leading up to targeted surgical decompres-
sion. Interestingly, this 18% diagnostic gap is
commensurate with the Multus RadBot’s percent-
age gain in reporting consistency in terms of
sensitivity, specificity, and positive predictive value
of the lumbar MRI scan with intervention reported
by clinical studies where numbers are in the 60%–
70% range.18

While the authors are encouraged by the excellent
diagnostic performance parameters of the Multus
RadBot’s self-learning deep neural network models,
they are also keenly aware of the underlying
limitation of their study because of the underlying
reporting bias inherent to the MRI reporting
provided by the radiologists. Affective (unconscious
emotional reaction) and cognitive (distortions of
thinking) biases in the clinical diagnostic decision-
making process may have impacted the radiologist’s
choice of words when dictating the findings he saw
on the individual axial and sagittal MRI scan
images.42 Cognitive biases, such as hindsight or

Table 9. Chi-square tests for sensitivity and specificity of RadBot AI read

versus MRI read by radiologist.a

Value df
Asymptotic

Significance (2-Sided)

Pearson Chi-square 150.751a 1 .000
Likelihood ratio 148.081 1 .000
N of valid cases 383

a0 cells (0.0%) have expected count less than 5. The minimum expected count is
53.80.
Abbreviations: AI, artificial intelligence; MRI, magnetic resonance imaging.

Table 10. Positive and negative predictive value of RadBot AI read versus

MRI read by radiologist.

RadBot

Regular MRI

TotalNormal Stenosis

Normal
Count 110 27 137
% positive predictive value

within MRI scan
80.3 19.7 100.0

Stenosis
Count 40 205 245
% negative predictive value

within MRI scan
16.3 83.7 100.0

Total
Count 150 232 382
% within MRI scan 39.3 60.7 100.0

Abbreviations: AI, artificial intelligence; MRI, magnetic resonance imaging.

Table 11. Chi-square tests for positive and negative predictive value of

RadBot AI read versus MRI read by radiologist.a

Value df
Asymptotic

Significance (2-Sided)

Pearson chi-square 150.751a 1 .000
Likelihood ratio 148.081 1 .000
N of valid cases 383

a0 cells (0.0%) have expected count less than 5. The minimum expected count is
53.80.
Abbreviations: AI, artificial intelligence; MRI, magnetic resonance imaging.
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outcome bias, are virtually unavoidable in a

retrospective reclassification of clinical parameters,

as knowledge of the outcome by the stakeholders in

the patient care equation has been recognized to

inflate the predictability of an event after it

happened.43,44 Hindsight cognitive biases may also

have impacted the extent of disagreement in

preoperative lumbar MRI grading by the radiolo-

gist.45 Intuition bias may have played a role in the

radiologist’s wording of the MRI report while

loosely adhering to radiographic stenosis classifica-

tion systems.45 The Multus RadBot is not subject to

these biases for which reasons the authors expect

higher reliability numbers incorrectly identifying

painful spinal pathology with further refinements of

the technology when directly visualized intraopera-

tive observations of painful spinal pathologies are

used as a gold standard rather than a radiologist

report of another imaging modality. The first author

has successfully used this approach in a prior study

of the positive predictive value of the routine lumbar

MRI scan.

CONCLUSIONS

This study set out to better understand how to

utilize the lumbar MRI scan as a prognosticator of

favorable clinical outcomes when selecting patients

for targeted spine care, such as the endoscopic

transforaminal decompression procedure, aiming to

cure patients of the predominant pain generator

causing pain and disability in the functional context

at the time when the spine care is delivered. To

employ the routine lumbar MRI scan as a more

accurate prognosticator for successful spine care

with high patient satisfaction, this AI deep learning

neural network, in the authors’ opinion, needs to be

further refined by focusing the segmentation models

on MRI image findings of intraoperatively verified

and validated pain generators responsive to treat-

Table 12. Interitem correlation matrix for reliability statistics of RadBot AI read versus MRI read by radiologist. The Cronbach alpha based on standardized items¼
.772 for normal and stenosis.

RadBot MRI

T12–L1 L1–L2 L2–L3 L3–L4 L4–L5 T12–L1 L1–L2 L2–L3 L3–L4 L4–L5 L5–S1

RadBot
T12–L1 1.000 .064 �.055 .105 .071 .484 .045 �.213 .141 �.022 �.169
L1–L2 .064 1.000 .154 .007 .211 .051 .377 �.040 �.168 �.001 .030
L2–L3 �.055 .154 1.000 .180 �.082 �.032 .276 .720 .231 �.099 .113
L3–L4 .105 .007 .180 1.000 �.105 .100 .033 .312 .627 �.087 �.100
L4–L5 .071 .211 �.082 �.105 1.000 .147 �.181 �.065 �.141 .508 .011

Open
T11–L1 .484 .051 �.032 .100 .147 1.000 .093 �.153 .003 .003 �.161
L1–L2 .045 .377 .276 .033 �.181 .093 1.000 .082 �.048 �.130 �.013
L2–L3 �.213 �.040 .720 .312 �.065 �.153 .082 1.000 .271 �.064 .153
L3–L4 .141 �.168 .231 .627 �.141 .003 �.048 .271 1.000 �.178 �.099
L4–L5 �.022 �.001 �.099 �.087 .508 .003 �.130 �.064 �.178 1.000 .092
L5–S1 �.169 .030 .113 �.100 .011 �.161 �.013 .153 �.099 .092 1.000

Abbreviations: AI, artificial intelligence; MRI, magnetic resonance imaging.

Table 13. Total reliability statistics of RadBot AI read versus MRI read by

radiologist. The Cronbach alpha based on standardized items¼ .772 for normal

and stenosis.

Scale

Mean

if Item

Deleted

Scale

Variance

if Item

Deleted

Corrected

Item-Total

Correlation

Squared

Multiple

Correlation

Cronbach

Alpha

if Item

Deleted

RadBot
T12–L1 6.4000 2.990 .094 .300 .421
L1–L2 6.0833 2.620 .173 .308 .398
L2–L3 5.8667 2.219 .456 .606 .272
L3–L4 5.6000 2.685 .296 .474 .365
L4–L5 5.5333 2.999 .083 .384 .423
L5–S1 No statistics are computed because RadBot is a constant.

MRI
T12–L1 6.2333 2.860 .064 .293 .435
L1–L2 6.0500 2.591 .185 .272 .393
L2–L3 5.8333 2.412 .322 .625 .335
L3–L4 5.6833 2.762 .144 .483 .408
L4–L5 5.6833 3.034 �.050 .303 .471
L5–S1 5.7000 2.959 �.005 .080 .458

Abbreviations: AI, artificial intelligence; MRI, magnetic resonance imaging.

Table 14. Total statistics for highest reliability levels of RadBot AI read versus

MRI read by radiologist. The Cronbach alpha based on standardized items ¼
.772 for normal and stenosis.

Scale

Mean

if Item

Deleted

Scale

Variance

if Item

Deleted

Corrected

Item-Total

Correlation

Squared

Multiple

Correlation

Cronbach

Alpha

if Item

Deleted

RadBot
L2–L3 2.2787 .904 .529 .537 .629
L3–L4 2.0000 1.200 .447 .424 .681

MRI
L2–L3 2.2459 .855 .614 .561 .566
L3–L4 2.0820 1.110 .424 .407 .688

Abbreviations: AI, artificial intelligence; MRI, magnetic resonance imaging.
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ment. The authors are in the process of completing a
pilot study on this very problem. Surgical transla-
tional research on intraoperatively visualized spinal
pathology should focus on analyzing the effective-
ness of MRI prognosticators with spine surgical
interventions, such as endoscopy, using state-of-the-
art measures of central, lateral recess, and neural
foraminal stenosis on MRI to further determine
how they impact the prognosis of surgical treatment
for neurogenic claudication and lumbar radiculop-
athy.
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