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ABSTRACT

Background: The optoelectronic camera source and data interpolation serve as the foundation for navigational
integrity in the robotic-assisted surgical platform. The objective of the current systematic review serves to provide a basis
for the numerical disparity that exists when comparing the intrinsic accuracy of optoelectronic cameras: accuracy
observed in the laboratory setting versus accuracy in the clinical operative environment. It is postulated that there exists
a greater number of connections in the optoelectronic kinematic chain when analyzing the clinical operative
environment to the laboratory setting. This increase in data interpolation, coupled with intraoperative workflow
challenges, reduces the degree of accuracy based on surgical application and to that observed in controlled
musculoskeletal kinematic laboratory investigations.

Methods: Review of the PubMed and Cochrane Library research databases was performed. The exhaustive
literature compilation obtained was then vetted to reduce redundancies and categorized into topics of intrinsic
optoelectronic accuracy, registration accuracy, musculoskeletal kinematic platforms, and clinical operative platforms.

Results: A total of 147 references make up the basis for the current analysis. Regardless of application, the common
denominators affecting overall optoelectronic accuracy are intrinsic accuracy, registration accuracy, and application
accuracy. Intrinsic accuracy of optoelectronic tracking equaled or was less than 0.1 mm of translation and 0.1° of rotation
per fiducial. Controlled laboratory platforms reported 0.1 to 0.5 mm of translation and 0.1°-1.0° of rotation per array. There
is a huge falloff in clinical applications: accuracy in robotic-assisted spinal surgery reported 1.5 to 6.0 mm of translation and
1.5° to 5.0° of rotation when comparing planned to final implant position. Total Joint Robotics and da Vinci urologic
robotics computed accuracy, as predicted, lies between these two extremes—1.02 mm for da Vinci and 2 mm for MAKO.

Conclusions: Navigational integrity and maintenance of fidelity of optoelectronic data is the cornerstone of robotic-
assisted spinal surgery. Transitioning from controlled laboratory to clinical operative environments requires an increased
number of steps in the optoelectronic kinematic chain and error potential. Diligence in planning, fiducial positioning, system
registration, and intraoperative workflow have the potential to improve accuracy and decrease disparity between planned
and final implant position. The key determining factors limiting navigation resolution accuracy are highlighted by this

Cochrane research analysis.

Special Issue Article
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INTRODUCTION

The fundamental technological challenge of
navigation and robotic-assisted spinal surgery is
that the virtual world needs to clearly represent the
physical, real-time world. Among the multiple
applications, variables, and equipment used in
navigation and robotic-assisted spinal surgery, the
optoelectronic camera source and data interpolation
process serves as the foundation for navigational
integrity and accuracy (or lack thereof) in the
surgical platform. The spectrum of optoelectronic

technology platforms is quite diverse, with use in
sports performance activities such as speed skating
and soccer,'™* human ergonomics,>® clinical gait
and motion analysis,” '> musculoskeletal kinemat-
ics,"*? and clinical operative procedures.”'* To
this end, the degree of accuracy and errors
acceptable across optoelectronic motion measure-
ment platforms differ considerably based on appli-
cation.! For example, fiducial arrays placed on
anatomic pelvic landmarks of alpine skiers reported
translation accuracy and errors of 8.37 = 7.1 mm.*
Although considered adequate for the evaluation of
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positional or orientation-related differences in this
athletic application, discrepancies of this magnitude
would be unacceptable in the clinical operative
setting. Technological advancements in the accuracy
of optoelectronic marker—based systems over the
past 20 years have facilitated the adoption and
application of these platforms to the field of robotic-
assisted spinal surgery.'>*®**’ An ensuing plethora
of journal publications have documented the safety,
efficacy, and technical accuracy of navigation and
robotic systems,?! 2#307323548°55 gperative surgical
applications,>>>*°%>" and challenges of process
workflow, learning curve, and training.-3%-31:30-31
Review of these publications reveals what could
be defined as a significant discrepancy when
comparing optoelectronic accuracy in the laborato-
ry setting versus the clinical operative environment.
An approximate 10-fold decrease in technical
accuracy of final implant position (<2 mm) in the
clinical operative environment was observed com-
pared with controlled musculoskeletal kinematic
studies (<0.2 mm) despite the use of nearly identical
optoelectronic camera systems. Hence, the objective
of the current systematic review serves to provide a
basis for the numerical disparity that exists when
comparing the intrinsic accuracy of optoelectronic
cameras, accuracy observed in the laboratory
setting, and accuracy in the clinical operative
procedures. It is postulated that there exists a
greater number of linkages in the optoelectronic
kinematic chain when analyzing the clinical envi-
ronment in the laboratory setting. This increase in
data interpolation, coupled with intraoperative
workflow challenges, reduces the degree of accuracy
compared with that observed in controlled muscu-
loskeletal kinematic laboratory investigations.

METHODS

A comprehensive systematic review of the
PubMed and Cochrane Library research databases
was performed. The time interval was unrestricted,
but the majority of publications making up the basis
of this analysis were from 2000 to the present. A
combination of key search terms was stratified into
the following: optoelectronic measurement systems,
technical accuracy, experimental error, robotic-
assisted surgery, spinal kinematics, and navigation.
The search was limited to papers in the English
language, indexed in peer-reviewed journals acces-
sible through online searches, and all publications
included required a bona fide PubMed identification
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(pmid) or digital object identifier (doi) citation. The
exhaustive literature compilation obtained was then
pooled in an EndNote file, vetted to reduce
redundancies and categorized into topics pertinent
to optoelectronic measurement system accuracy
with specific reference to intrinsic accuracy, regis-
tration accuracy, musculoskeletal kinematic plat-
forms, and clinical operative platforms. The
primary tier for inclusion focused on publications
that reported quantitative units of measure (mi-
crons, millimeters, and degrees) for intrinsic camera
accuracy and tolerances, accuracy obtained in a
controlled laboratory setting, and accuracy in the
clinical operative setting. In various fields—spinal
surgery, urologic surgery, and total joint replace-
ment surgery—navigation and robotic accuracy are
measured and compared with the Optotrak 3020
and Optotrak Certus systems (Northern Digital
Instruments, Waterloo, Ontario, Canada). Several
localized positions in a radiographic phantom are
compared with the data acquired with the gold
standard Optotrak systems. For example, individual
da Vinci trials were registered to the mean Optotrak
data using a rigid point-based registration method.

An extensive number of peer-reviewed journal
publications have documented the use, efficacy,
safety, and technical accuracy achieved with robot-
ic-assisted spinal surgery. The focus in reviewing
these publications was to highlight the technical
accuracy observations and determine a basis for
discrepancy between planned versus actual final
implant position based on postoperative computed
tomography (CT) images. In case studies where
quantitative measurements were not reported, the
Gertzbein and Robbins score (GRS) was adopted to
calculate pedicle screw implant position.*® Accord-
ing to the GRS classification, screws centered within
the pedicle are considered grade A, <2 mm from
center is a grade B, a breach from 2 to 4 mm is grade
C, a breach from 4 to 6 mm is grade D, and >6 mm
is grade E. Grades of A and B (<2-mm pedicle
breach) are considered clinically acceptable, and all
other grades indicate malposition.

RESULTS

Three-Dimensional Cartesian Rigid Body
Transformations

The reported optoelectronic measurements of
accuracy, errors, and methods to quantify these in
the laboratory setting or clinical operative environ-
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Figure 1. Cartesian Coordinate System and Conceptual Framework for Spinal
Kinematics — Schematic representation of a fixed 3-dimensional Cartesian
coordinate system for calculation of rigid body transformation in millimeters
(mm) translation and degrees (deg) rotation along three orthogonal axes — X, Y
and Z (A). This is in accordance to the axial (Y), sagittal (Z) and coronal (X)
anatomic planes as defined by Panjabi’s 3-dimensional conceptual framework
for spinal kinematics (B).

ment are based on a fixed three-dimensional
Cartesian coordinate system of rigid body transfor-
mation in millimeters of translation and degrees of
rotation along three orthogonal axes: X, Y, and
7.%°% This is in accordance to the axial (Y), sagittal
(Z), and coronal (X) anatomic planes as defined by
Panjabi’s three-dimensional conceptual framework
for spinal kinematics (Figure 1).°*° From a
nomenclature standpoint, accuracy is defined as a
combination of trueness and precision according to
the published International Organization for Stan-
dardization standard 5725-1.°7 Trueness refers to
the difference between measured value and true
position, typically represented by the mean value of
repeated measurements. Precision is a measure of
repeatability, typically represented by the standard
deviation of repeated measurements, and refers to
random error and noise within the system. In
addition to these standardizations, a useful key
measure with regard to accuracy (trueness and
precision) is the root mean square distance error
(RMS) as given by ¢; being the three-dimensional
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distance error of measurement i and N the number
of measurements:®®

Optoelectronic Measurement Systems

Image-guided surgery is based on the principle of
integration and registration of the operative field to
pre- or intraoperative data set (eg, CT or magnetic
resonance imaging) via amalgamation of an opto-
electronic imaging system with robotic platform.®’
Although not necessarily involved in the execution
of operative procedures, optoelectronic measure-
ment systems are considered the gold standard in
motion capture accuracy’® and provide three-
dimensional visualization and guidance, improving
task execution and targeting accuracy while func-
tioning in a semiautonomous fashion.”' Hence,
objective accuracy and error assessments of opto-
electronic-robotic interventional platforms is essen-
tial. The Optotrak 3020 with a 24 infrared light-
emitting diode (IRED) pen probe has a National
Institute of Standards and Technology traceable
accuracy of 0.1 mm for a single IRED over the work
volume and a 0.25-mm accuracy when localizing a
24-IRED helical pen probe. Regardless of optoelec-
tronic camera system, the fundamental triad of
common denominators in assessing platform accu-
racy include (1) intrinsic accuracy of the source
device, (2) registration and tracking accuracy, and
(3) application accuracy. Prior to addressing the
basis for application accuracy across laboratory
versus clinical platforms, the intrinsic and registra-
tion accuracy and potential for error propagation
are of primary consideration.

Intrinsic (Technical) Accuracy

The initial link in the optoelectronic kinematic
chain of data transference resides in the intrinsic
accuracy of the camera source. Of the multiple
factors affecting downstream optoelectronic accu-
racy in musculoskeletal kinematic and clinical
operative platforms, the intrinsic camera compo-
nents are most controllable. Mechanical compliance
of the system, loose interconnection mechanisms,®’
variation in camera resolution, calibration, imper-
fect lenses, number of cameras, spatial orientation,
noise, computer vision algorithms, and jitter all
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represent sources of intrinsic error in optoelectronic
systems.*-6%7%73 Maletsky et al’* reported the
relative accuracy position between two rigid bodies
at 0.03 mm of translation and 0.04° of angulation,
respectively. As a baseline statement of comparison,
the optoelectronic systems used in clinical operative
or controlled laboratory platforms report only
marginal differences in accuracy. Further, the
contribution of intrinsic errors is of miniscule value
in comparison to error(s) propagation secondary to
registration: targeting tracking and application in
controlled experimental and clinical operative plat-
forms.

Registration Accuracy and Target Tracking

A second key step in the optoelectronic kinematic
chain and highest probable link(s) of error propa-
gation is the registration process. This intraopera-
tive process integrates correlation and mapping
algorithms to register the physical patient to the
virtual patient via the navigation system, optoelec-
tronic source, fiducial arrays in the operative field,
and coregistration of the patient intraoperative X-
rays with the preoperative CT images. Accurate,
close-to-ideal reference reproducibility and fidelity
of the data set improves trueness and precision of
subsequent intraoperative tracking. Multiple factors
affect registration accuracy and target tracking,
including optoelectronic camera source, passive
versus active arrays, occlusions, distance between
fiducial arrays and camera source, static versus
dynamic array localization, and anatomic locations
of the coordinate reference fiducials.':3344-3%:68-81
For example, increasing the camera distance from 6
to 8 ft nearly triples the intrinsic registration error
along the Z axis (maximum = 0.250 mm) for the
Polaris passive fiducial array system. Hence, closer
approximation of the optoelectronic camera source
to the operative fiducial arrays (<6 ft, or approx-
imately 1800 mm) minimizes jitter and improves
precision.® In summary, propagation of computa-
tional measurement errors in the optoelectronic
kinematic chain has a compounding effect for the
following transitions: (1) measurement of the
intrinsic image plane error secondary to errors
within the optoelectronic system, (2) transitioning
from image error to fiducial location error, and (3)
transition from fiducial location error to tracking
target error. The mathematical expressions for these
computational transformations are beyond the
scope of the current publication but are well
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documented by Fitzpatrick et al’””® and Sielhorst

et al.”” The margins of error secondary to intrinsic
and registration accuracy in optoelectronics are
more manageable compared with unpredictable
factors related to application in the laboratory
versus dynamic clinical intraoperative environ-
ments.

Application Accuracy: Basic Scientific Laboratory
Platform

A plethora of publications have documented the
biomechanical properties of the occipitocervical
through lumbopelvic spine under controlled labo-
ratory conditions using Panjabi’s 3-dimensional
conceptual framework for testing.'”®*°%*3 In con-
trast to the challenges of the clinical operative
environment, motion analysis of spinal implant and
anatomic vertebral structures(s) in the controlled
laboratory setting is performed using a 6-degree-of-
freedom musculoskeletal simulator interfaced with
an optoelectronic measurement system. The funda-
mental principles pertinent to maximizing optoelec-
tronic accuracy include mounting the specimen to a
rigid testing platform, affixing active or passive
fiducial arrays directly to implants or anatomic
structures using screw-bolt fixation, and creating
rigid body configurations parallel to the camera
source. To this end, a series of laboratory investi-
gations using the NDI Certus and Vicon MX13
camera systems (Vicon Motion Systems Ltd, Ox-
ford, UK) reported the peak limits of optoelectronic
accuracy when evaluating kinematics of the osteo-
ligamentous spine.'* "% Cunningham et al'
compared occipital plate versus intracranial anchors
for reconstruction of the occipitocervical (O-C)
junction. The reported differences (degrees) in axial
rotation at the O-C junction based on optoelectron-
ic measurements were 4.13 = 2.05 (intact), 0.22 =
0.13 (plate), and 0.30 = 0.21 (anchor). Rotation of
the plate and anchor with respect to the occiput in
flexion-extension ranged from 0.06 £ 0.05 to 0.10 =
0.08, respectively. Although not of clinical signifi-
cance, the study quantified differences on the order
of 0.1° between 2 methods of occipitocervical
fixation.

In a complex kinematic study using a Vicon
optoelectronic system, La Barbera et al'®!” investi-
gated lumbar interbody cages with Ponte osteotomy
versus pedicle subtraction osteotomy for severe
sagittal imbalance. The peak accuracy of neutral
zone measurements (degrees) across the intact L3—
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Figure 2. Laboratory Platform for Optoelectronic Data Transference Process - Schematic illustration demonstrating the laboratory workflow and process for data
transference utilizing optoelectronic tracking. The camera source visualizes the active fiducial arrays affixed to the vertebral elements and transfers the data directly to
the user interface for computational analysis. The collective effect of testing methodology and limited experimental coordinate transformations between data input /

output reduces error propagation and maximizes optoelectronic accuracy.

L5 segments demonstrated values of 0.7 (range 0.3—
1.9) in flexion-extension, 1.0 (range 0.1-3.8) in
lateral bending, and 0.2 (range 0.1-0.9) in axial
rotation in flexion-extension. Factors of specimen
stabilization, alignment, camera resolution, proxim-
ity to fiducials, planar visualization of the active
arrays, and controlled motion application account
for the high degree of accuracy reported in these
studies. Laboratory workflow methods and condi-
tions for experimental musculoskeletal kinematic
studies are streamlined and optimized for maximiz-
ing optoelectronic accuracy. Factors of specimen
stabilization, alignment, camera resolution, proxim-
ity to fiducials, planar visualization of the active
arrays, and controlled motion application account
for the high degree of accuracy reported in these
studies. The collective effect of testing methodology
and limited experimental coordinate transforma-
tions between data input/output reduces error
propagation and maximizes optoelectronic accuracy
(Figure 2, Table).”™’

Application Accuracy: Clinical Operative Platform

Transitioning from controlled laboratory condi-
tions to the dynamic variability of a clinical
operative environment presents a different set of
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application challenges for maintaining peak opto-
electronic accuracy. Unique to robotic-assisted
surgery and in contrast to the laboratory setting,
the intraoperative process requires considerably
more steps in the transference of optoelectronic
kinematic data. This complex process flow inte-
grates correlation and mapping algorithms to
register the physical patient to the virtual patient
via the navigation system, optoelectronic source,
surveillance markers, patient reference markers, end
effector instruments in the operative field, and
patient CT images. Accurate, close-to-ideal refer-
ence reproducibility and maintenance of this data
set is the primary intraoperative objective and
challenge. Despite the use of nearly identical
optoelectronic sources and fiducial arrays, a consis-
tent disparity exists when comparing the reported
technical accuracies in the laboratory setting versus
clinical operative environment. An approximate 10-
fold decrease in accuracy was observed when
comparing the final implant position (<2 mm) in
the clinical operative environment with musculo-
skeletal kinematic studies (<0.2 mm). An extensive
number of peer-reviewed journal publications have
documented the use, efficacy, safety, and technical
accuracy achieved with robotic-assisted sur-
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Table. Robotic and navigation accuracy.
Measurement
Application Author/Year Article Type System Numbers: Navigation Accuracy and Outcomes
Clinical operative
setting
Spinal surgery Helm et al 2015%* Literature review Optoelectronic 12 622 pedicle screws total:
measurement as planned: 93%
system <2 mm of plan: 3.1%
>2-4 mm of plan: 0.72%
4-6 mm of plan: 0.43%
Zhang et al 2020*° Systemic review of Optoelectronic 5013 pedicle screws total:
Prospective, measurement as planned: 95.3%
retrospective, and system >2-6 mm of plan: 4.6%
randomized
control trials
Devito et al 2010%¢ Prospective clinical Optoelectronic 646 pedicle screws total:
study measurement as planned: 89.3%
system <2 mm of plan: 8.9%
>2-4 mm of plan: 1.3%
> 4 mm of plan: 0.31%
Keric et al 20177 Prospective clinical Optoelectronic 1857 pedicle screws total:
study measurement <3 mm of plan: 96.9
system >3-6 mm of plan: 2.0%
> 6 mm of plan: 1.1%
Tarawneh et al 20213* Systematic review Optoelectronic Grade (A + B):
measurement robot-assisted group: 97%
system freehand technique: 95.4%
(P = .008)
Total hip Cozzi Lepri et al 2020*° Prospective clinical Optoelectronic Intraoperative mean registration error: 0.2-0.6
arthroplasty study measurement mm
system Absolute discrepancy between robotic and
radiographic assessments:
leg length discrepancy: 1.3 = 1.5 mm
combined offset: 1.1 = 0.9 mm
Xu et al 20204 Prospective clinical Optoelectronic Target inclination: 40°; mean inclination
study measurement achieved: 40.7° (£0.9°)
system Target inclination: 45°; mean inclination
achieved: 45.3° (£1.0°)
Total knee Deckey et al 2021%! Prospective clinical Optoelectronic Robotic-assisted total knee arthroplasty versus
arthroplasty study measurement standard total knee arthroplasty, respectively:
system mean femoral positioning: 0.9° (£1.2°) versus
1.7° (£1.1°)
mean tibial positioning: 0.3° (+0.9°) versus
1.3° (£1.0°
mean posterior tibial slope:0.3° (%1.3°) versus
1.7° (%1.1°)
mean mechanical axis limb alignment: 1.0°
(£1.7°) versus 2.7° (£1.9°)
(all P < .001)
Jeon et al 2019* Retrospective Optoelectronic Outlier prevalence for hip-knee-ankle angle:
clinical study measurement robot-assisted group: 10.7%
system conventional group: 16.5%
Neurosurgery Goia et al 2018* Retrospective Optoelectronic Distance between intended and actual location:
clinical study measurement right side: 0.81 mm
system left side: 1.12 mm
Grunert et al 2003* Clinical literature Optoelectronic Intrinsic technical accuracy: 0.1-0.6 mm
review measurement Registration accuracy: 0.2-3 mm
system Application accuracy: 0.6-10 mm
In vitro laboratory
setting, basic
scientific studies
La Barbera et al 2020'%1° In vitro lumbar Optoelectronic Flexion-extension: 0.7° (range 0.3°-1.9°)
cadaveric model measurement Lateral bending: 1.0° (range 0.1°-3.8°)
system Axial rotation: 0.2° (range 0.1°-0.9°)
Lieberman et al 2006 In vitro lumbar Optoelectronic Four screws deviated from surgeon’s plan: 1.02
cadaveric model measurement + 0.56 mm (range 0-1.5 mm)
system
Cunningham et al 2020 In vitro cervical Optoelectronic Differences between two methods of
cadaveric model measurement occipitocervical fixation: 0.06 (+0.05°)
system
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Table. Continued.
Measurement
Application Author/Year Article Type System Numbers: Navigation Accuracy and Outcomes
Sun et al 2020°! Plastics and Robot-assisted 3-  Outside position error: 1.71 * 0.16 mm
reconstruction, dimensional Inside position error: 1.37 £ 0.28 mm
craniofacial reconstructive Orientation error: 3.04 = 1.02°
surgery, 3- frame
dimensional
printed model and
canine model
Guo et al 2020 Sports medicine, Optoelectronic Robotic positioning accuracy in placing bone
human cadaveric measurement tunnels for ACL reconstruction:
knee model system dry bone tunnels: 1.73 mm
wet cadavers: 2.17 mm
freehand anterior cruciate ligament
reconnection: 6.46 mm
Hampp et al 2019 Total knee Optoelectronic Accuracy and precision to plan of robotic
arthroplasty, measurement cohort versus manual cohort, respectively:
human cadaveric system Femoral components:
knee model coronal plane: 0.6° versus 2.6°
sagittal plane: 1.1° versus 3.7°
axial plane: 0.7° versus 3.4°
Tibial components:
coronal plane: 0.8° versus 1.0°
sagittal plane: 1.4° versus 1.6°
Miller et al 2016%* Cardiothoracic, Optoelectronic Precise stent placement in all 8 animals
swine model measurement
system
Liu et al 2015% Otolaryngology and Augmented Resection ratios of mock tumor margins:
transoral robotic, reality image-guided robotic system: 1.00
porcine model control scenarios: 0.0
alternative methods of image guidance: 0.58
Kalia et al 2020 Urologic surgery, Augmented Target registration error (TRE): 4.56 = 1.57
gelatin phantom reality mm
TRE x-direction: 1.93 = 1.26 mm
TRE y-direction: 2.04 * 1.37 mm
TRE z-direction: 2.94 = 1.84 mm
Kwartowitz et al 2006°®  Phantom (da Vinci Robotic Mean localization error (da Vinci Classic):
Classic) telesurgery internal comparison: 1.02 mm
fiducial registration error: 1.31 mm
target registration error: 1.35 mm
Kwartowitz et al 2007 Phantom (da Vinci Robotic Mean localization error (da Vinci S):
S) telesurgery internal comparison: 1.05 mm
fiducial registration error: 1.31 mm
target registration error: 1.25 mm
Diakov et al 20197 Neurosurgery, skull Optoelectronic Registration error for entire head: 1.5 mm
phantom measurement
system
gery,?3:28:30.:34744.48.50752.55.36.1007127 The focus in re- (<2 mm of plan) indicated “no perforations” and

viewing these publications across multiple robotic-
assisted surgical platforms is to highlight the
technical accuracy and discrepancy between
planned versus actual final implant position (Table).

Based on the GRS system for transpedicular
screw accuracy, Helm et al** performed a compre-
hensive literature review on the technical accuracy
of 1 622 pedicle screws implanted using a variety of
image-guided surgery navigation systems. As re-
ported, 11 830 were positioned Ideal according to
preoperative plan (A), 395 screws within less than 2
mm of plan (B), 92 breached between 2 and 4 mm
off center (C), and 55 were within 4 to 6 mm of the
preoperative plan (Table). Grades of Ideal and A
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were considered acceptable in these anatomical
segments according to Helm and coworkers. As a
study limitation to the Helm et al publication, the
paradigm of 3-dimensional accuracy as reported by
Jiang et al'®® is a more suitable and accurate
description for pedicle screw placement versus
accuracy based on single-plane imaging.

The time-honored tenet of pedicle screw defor-
mity surgery, compared with European techniques
for decades, was “probe rather than drill” the
pedicle. This proved to be easier to learn and safer,
as the surgeon could use a blunt probe and stay
within the intramedullary canal of the pedicle and
“increase accuracy.” The accuracy and safety of
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Figure 3. Computed Tomographic Images — Computed tomographic images
demonstrating comparative pedicle screw insertion techniques of “Old School”
versus “New School” methods. The Old School technique includes probing the
center of the pedicle, intramedullary blunt pedicle finder, and concentrically
expanding the pedicle to permit screw insertion (A). The New School navigated
technique utilizes a more outside-in converging trajectory permitting
preservation of the medial pedicle wall (B). Note the change in position of the
circle defining region of insertion corridor.

pedicle screw insertion was defined as reducing the
number of pedicle screw breaches.'” With the
advent of navigation and robotics, this definition
has to be adapted to more contemporary goals
(Figure 3). It is now possible to safely insert 4.5-
mm-diameter pedicle screws into 3.0-mm thoracic
pedicles by using navigated outside-in techniques,
incorporating the entire costovertebral joint com-
plex as a navigated target. Using a more tangential,
outside-in converging trajectory, longer screws can
be implanted compared with the previous “old-
school,” nonnavigated techniques. Probing the
pedicle and starting in the middle of the pedicle
intramedullary canal allows the surgeon to concen-
trically enlarge the hole starting in the center.
Unfortunately, using this old-school technique, the
spinal canal can be breached in adolescent idio-
pathic scoliotic deformities, particularly on the
convex side from T1 to T6, where the pedicles tend
to be hypoplastic. With navigation, surgeons can
optimize screw size in the upper thoracic pedicles:
“drill to preserve the medial pedicle wall.” The
precise, pinpoint location where the robot starts
with orientation to the transverse process and
superior articular process is unique to each pedicle.
It is not in the center of the pedicle unless
transpedicular depth and diameter are of sufficient
dimension. The pedicle starting point, size, and
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optimal trajectory are planned based on a 3-
dimensional virtual spine digitally constructed from
a preoperative or early intraoperative CT scan. The
starting point is unique to each pedicle screw and
more tangential, especially in the cervical spine,
compared with freehand techniques. The navigated
trajectory is directed medial into the vertebral body
and often more cranial—difficult to predict and
accomplish freehand—which allows for improved
purchase without violation of the medial wall. Using
navigation and robotics in deformity procedures,
the “new navigated school” allows for precise
placement of costovertebral screws into the verte-
bral body. Therefore, the accuracy of robotic
pedicle screw placement is based on the planned
versus actual screw implant location, avoidance of a
medial pedicle wall breach, and obtaining optimal
fixation. The Gertzbein and Robbins quantitative
scale of pedicle screw accuracy is not appropriate in
the navigated school of robotic surgery, where
intentional breach of the lateral pedicle and
navigation of the pedicle screw into the costotrans-
verse joint complex is intentional (Figure 4). This
quantitative scale would result in a 100% intention-
al lateral breach despite increased fixation and
correction of the scoliotic curve.

In robotic-assisted total hip arthroplasty, Cozzi
Lepri et al* calculated differences between planned
and actual measurements in leg length of 1.3 * 1.5-
mm displacement and target inclination of 0.3° to
0.7° angulation. As reported by Goia et al,** for
neurosurgical applications in deep brain stimula-
tion, the difference between planned and actual lead
implantations positions was on the order of 0.8 to
1.12 mm of displacement (Table). For urologic
surgical procedures, the da Vinci robot has the most
extensive track record, with several generations of
improvements.'** 132 As of December 2008, there
were over 1000 da Vinci units sold, with well over
300 000 procedures performed. The most successful
application of the robot is prostatectomy, with
approximately 70% of all radical prostate removal
procedures performed with the da Vinci in 2008 in
the United States.'*® A typical comparison of
accuracy between the new da Vinci S model (1.25
mm) and the da Vinci Classic model (1.35 mm) are
shown in the Table.”®% As predicted, the intrinsic
computed accuracy of the da Vinci urologic robot
system is higher than robotic-assisted spinal appli-
cations (1.02 mm) but still not to the level of
Optotrak (0.25 mm).”® Da Vinci systems are in their
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Figure 4. Computed Tomographic and Schematic Images of Pedicle Screw Trajectory — The New Navigated School permits the surgeon to maximize pedicular
fixation by incorporation of the entire costovertebral complex as showing the computed axial tomographic and schematic illustrations (A). As such, longer and larger
diameter pedicle screws (5.5 mm versus 4.5 mm) can be inserted, while avoiding breach of the medial pedicle wall (B).

third generation—it is anticipated that the accuracy
of spinal navigation and robotics will demonstrate
similar improvements over the same time period
with iterative improvements. Importantly, the da
Vinci is a master-slave robot that does not
incorporate real-time optoelectronic camera track-
ing. The current systematic review compares the da
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Vinci with studies that have been done with
optoelectronic camera systems; however, this para-
digm is not directly comparable to a real-time
image-guided system that is used in spinal surgery.
A direct comparison of accuracy between these 2
different robotic systems is challenging, as 2
different things are being compared (movement of
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Figure 4. Continued.

a robotic arm in the case of the da Vinci and
accuracy of screw placement in the case of a spine
robot). While “accuracy” inferences can be made, a
direct comparison between different robotic systems
in different surgical subspecialties needs to take into
account different definitions of “accuracy.”

The continuation in the adoption of navigation
and robotic-assisted surgical procedures is ensured,
as there is space for improvement in the accuracy
based on Cunningham and Brooks’s'** meta-anal-
ysis, which establishes the basic scientific accuracy:
0.1 mm of translation and 0.1° degree of rotation in
optoelectronic laboratory conditions. Despite the
use of nearly identical optoelectronic systems in the
laboratory and clinical settings, the precision falls
off in clinical spine applications to 3 to 4 mm
translation and 2° to 3° of rotational accuracy.
Robotic-assisted total joint replacement currently
lies between these 2 extremes. Total joint robotics
does not involve viscoelastic joints (3-joint com-
plexes similar to the functional spinal unit) and does
not involve a series of chain linkages between the
navigated bone and skeletally anchored reference
fiducials. Hence, the basis for the disparity and
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continuum of accuracy when transitioning from the
controlled laboratory setting to the clinical opera-
tive environment is secondary to an increased
number of steps in the optoelectronic kinematic
chain and potential for error propagation in
experimental coordinate transformations. More-
over, intraoperative challenges of array location,
system registration, spinal flexibility, anatomic
topography, and workflow affect navigational
integrity and provide a basis for the disparity of
optoelectronic accuracy in the clinical environment
compared with the controlled laboratory setting.
Collectively, these factors result in a continuum of
optoelectronic accuracy with the greatest degree of
accuracy observed in the laboratory setting and the
least in the clinical operative spine environment
(Table).

Basis for Disparity in Optoelectronic Accuracy

A key consideration pertaining to optoelectronic
accuracy in the clinical environment compared with
the laboratory setting is the dynamic nature of the
operating room. The basis for disparity in accuracy
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when equating the laboratory versus clinical oper-
ative platforms is a result of the combined,
cumulative errors secondary to the intraoperative
workflow process, variability in anatomic morphol-
ogy, and spinal flexibility. Of fundamental impor-
tance and the crux of the matter related to error
propagation in navigation and robotic-assisted
spinal surgery is the assumption that the workflow
platform and patient’s spine are rigid, and, as such,
motion of any type is perceived as a rigid body
transformation. Optoelectronic error reduction in
the clinical flow requires stabilization of the camera
source, rigid fixation of surveillance arrays in the
iliac crest, stable attachment of patient reference
and registration arrays to anatomic landmarks, and
end effector instruments arrays that are inflexible.
The end effector is the last link where the robotic
enters the work space, and small rotations or
translations in the array references can lead to large
errors in instrument position. Although accurate,
close-to-ideal reference reproducibility of these steps
will reduce errors, the reality is that fixed arrays do
move, leading to increased relative motions between
arrays and subsequent error propagation and
disparity between the physical, real-time world and
the virtual world. Moreover, spatial errors can be
further magnified due to geometrical distortion of
preoperative images and tracking error of the
surgical instruments.'** To register the physical
patient to the virtual patient, Grunert et al**
proposed a series of transformation matrices,
including fiducial-based paired-point transforma-
tion, surface contour matching, and hybrid trans-
formation. The hybrid transformation process is
most applicable to robotic-assisted spinal surgery,
as it includes the methods of surface-based and pair-
point—based methods with implanted fiducials. As
such, tracing at least 3 anatomic landmarks with
navigational confirmation serves to reduce error
potential.

Several publications on optimizing clinical work-
flow process have been reported.’!#%->31347138 | jo_
berman et al’' provides an excellent description of
the step-by-step workflow process in robotic-assist-
ed spinal surgery. The report provides a concise
methodological approach to operative workflow
while at the same time providing a collective basis
for potential error(s) propagation in the clinical
setting. The sequential description of process flow/
error potentials includes preoperative and intraop-
erative registration, dislodgement of reference ar-
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rays, damaged or bent navigation tools'** "' and

array occlusions (eg, distance and blood), skiving or
tool deflection secondary to sloped anatomic
topology or muscle retraction, and untracked
patient movement during the spinal destabilization
procedure. In addition to unintended motion or
bending of fiducial arrays, the inherent differences
in anatomic topology, bone mineral density, and
flexibility of the patient’s spine, both before and
following destabilization and reconstruction proce-
dures, cannot be overemphasized. The challenge is
that the spine is often flexible—the drill and robotic
arm may be properly located, but highly mobile,
multisegmental spinal reconstructions with minimal
deflection force lead to unintended rotation or
translation of the operative vertebral elements,
skiving, or tool deflection and affects precision rate
during screw insertion3!:4%-136:137.140.142.143 7o 5.
sis for decreased technical accuracy in the clinical
operative platforms is a result of combined,
cumulative errors secondary to the intraoperative
workflow process, the number of kinematic linkag-
es, and variability in patient spinal morphology and
flexibility (Figure 5).

DISCUSSION

In reviewing the intrinsic technical accuracy and
registration accuracy, there exists a substantial
burden of proof that the potential performance in
optoelectronics is nearly identical between the two
platforms—Iaboratory versus clinical operative—
under static conditions. The downstream difference
in optoelectronic technical accuracy and disparity
between the 2 platforms is secondary to the dynamic
factors unique to each. The laboratory workflow
methods and array registration for experimental
basic scientific studies are rigid and highly con-
trolled with limited experimental coordinate trans-
formations between data input/output, reducing
error propagation and maximizing optoelectronic
accuracy. Unique to robotic-assisted spinal surgery,
the dynamic intraoperative process necessitates
considerably more steps in the transference of
optoelectronic kinematic data. The complex data
flow process integrates correlation and mapping
algorithms to register the physical patient to the
virtual patient via the navigation system, optoelec-
tronic source, surveillance markers, patient refer-
ence markers, end effector instruments, and patient
CT images. Essentially, this is a comparison of
technical accuracy between a rigid, highly controlled
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Figure 5. Clinical Platform for Optoelectronic Data Transference Process — Schematic illustration demonstrating the operative clinical workflow and process for data
transference utilizing optoelectronic tracking. Unique to robotic-assisted surgery and in difference to the laboratory setting, the intra-operative process requires
considerably more steps in the transference of optoelectronic kinematic data. This complex workflow process integrates correlation and mapping algorithms to register
the physical patient to the virtual patient via the navigation system, optoelectronic source, surveillance markers, patient reference markers, end effector instruments in
the operative field, and patient CT images. Accurate, close-to-ideal reference reproducibility and maintenance of this dataset is the primary intra-operative objective

and challenge.

setting and a variable environment with multiple
data input factors. The collective effect results in an
increased potential for error propagation from
experimental coordinate transformations, data pro-
cessing, and optoelectronic kinematic linkages in the
clinical setting.

There is significant potential for clinical improve-
ments in spinal navigation and robotics. The current
challenges as addressed in this Special Focus Issue
are multifactorial:

1. The patient’s thoracic spine moves under
anesthesia with respirations as the chest
cavity expands. This decreases the accuracy
of placing pedicle screws on the upper convex
side of adolescents with scoliotic curves.

2. An increased number of skeletally based
reference fiducials are necessary and located
closer to the target site.

3. Intervening spinal motion above and below
spinal anchors, that is, Mazor L3-L.4 motion
when the Hover-T frame spans from the 2
pelvic Steinmann pins (PSIS) to the TI12
spinous process (K-wire). The intercalated
spinal segments that are bridged are free to
move.
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4. Need additional confirmatory skeletal refer-
ence fiducials to prevent skiving.

5. Learning through artificial intelligence would
permit progressive incorporation of informa-
tion as each pedicle screw is successfully
inserted. The successive introduction of each
pedicle screw should be merged into virtual
information — leading to increased accuracy.

6. Clinical accuracy of robotics and navigation is
not solely related to robotic sophistication.
Fluoroscopic resolution used in registration
and merging of the virtual data intraopera-
tively is often the gating item. Improvement in
intraoperative 3-dimensional CT would in-
crease accuracy and decrease operative time.

The future of spine robotics and navigation is
essentially here—one only has to look at other
fields. For example, otolaryngology has used
electromagnetic fields for navigation rather than
infrared camera capture of reflective skeletal fidu-
cials. For intraoral resection of tumors, electromag-
netic fields are advantageous, as they allow the
advantage of non-line-of-sight navigation. This
allows the surgeon to navigate around a corner or,
in the case of otolaryngology, down the hypophar-
ynx. There are 2 disadvantages of electromagnetic
field navigation that have to be solved before this
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non-line-of-sight technology can be used in spine
surgery. First, there cannot be ferromagnetic
instruments in the field. Second, the distance (<12
in) between the end effector and the field generator
has to be reduced in order to have accurate
navigation. The line-of-sight requirement for spinal
navigation is a significant obstacle in current
technology; it is invigorating that other surgical
specialties are able to work through this obstacle.
There are several recent prospective randomized
multi-institutional MIS trials that have relevance in
the area of safety and accuracy of navigation and
robotics. Good et al'** in their MIS ReFRESH
study compared the complications and revision
rates from Mazor robotics in 485 patients—374
robotic guidance arm and 111 patients in a
fluoroscopy guidance arm from 9 sites. Fluoroscop-
ic time per screw during instrumentation was 3.6 =
3.9 s with Mazor compared with 17.8 £ 9 s with
fluoro-guidance, indicating an 80% reduction in
intraoperative radiation per screw (P < .001).
During the first postoperative year, robotic guid-
ance led to a 5.8 times lower risk of surgical
complications and 11 times reduced risk of revision
surgery. It is important to follow the progress of
prospective randomized trials such as the MIS-
ReFRESH study as more data are accumulated
over longer time intervals. Staartjes et al'** pooled 3
randomized controlled trials, and Lieber et al®® are
following 257 patients in a national inpatient sample
with matched freehand controls. Gradually, implant
accuracy should improve, complications should
decrease, and revision rates should decrease as the
early majority of fellowship-trained spinal surgeons
gain more peer-reviewed and networked experience.

CONCLUSIONS

The fundamental technological challenge of
navigation and robotic-assisted spinal surgery is
that the virtual world needs to clearly represent the
physical, real-time world. Navigational integrity
and maintenance of fidelity in the transference of
optoelectronic data is the cornerstone of robotic-
assisted surgery. Transitioning from the controlled
laboratory setting to the clinical operative environ-
ment requires an increased number of steps in the
optoelectronic kinematic chain and potential for
error propagation in experimental coordinate trans-
formations. Moreover, intraoperative challenges of
array location, system registration, spinal flexibility,
anatomic topography, and workflow affect naviga-
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tional integrity and provide a basis for the disparity
of optoelectronic accuracy in the clinical environ-
ment compared with the controlled laboratory
setting. A continuum of decreased accuracy is
demonstrated when comparing the optoelectronic
camera source itself with application in musculo-
skeletal platforms and, finally, the clinical operative
environment. Diligence in the areas of preoperative
planning, source camera and fiducial positioning,
system registration, and intraoperative process
workflow has the potential to improve accuracy
and decrease disparity between planned and final
implant position.
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