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Abstract
Background
Spinal fusions are being performed for various pathologies of the spine such as
degenerative diseases, deformities, tumors and fractures. Recently, other bone substitutes
such as demineralized bone matrix (DBM) have been developed for spinal fusion.
Therefore, this study was conducted to evaluate the intertransverse posterolateral fusion
with the Bovine fetal growth plate (DCFGP) and compare it with commercial DBM in rat
model.

Methods
A total of 16 mature male rats (aged 4 months and weighing 200-300 g) were randomly
divided in two groups. After a skin incision on posterolateral site, two separate fascial
incisions were made 3 mm from the midline. A muscle-splitting approach was used to
expose the transverse processes of L4 and L5. Group I (n = 8) underwent with implanted
Bovine fetal growth plate among decorticated transverse processes. In group II (n = 8)
commercial DBM was placed in the same manner. Fusion was evaluated by manual
palpation, radiographical, gross and histopathological analysis.

Results
The manual palpation, radiological, gross and histopathological findings indicate high
potential of the DCFGP in spinal fusion. At the 42nd postoperative day, new bone
formation as evidenced by a bridge between L4 and L5 was visualized in all rats
implanted with DCFGP and commercial DBM. The newly formed bone tissue was
observed in all implanted areas on the 42nd day after operation in the two groups.
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Conclusion
The spinal fusion of the animals of both groups demonstrated more advanced osteogenic
potential and resulted in proper fusion of the transverse process of lumbar vertebra.

keywords: spinal fusion, DCFGP, DBM, rat
Volume 8 Article 5 doi: 10.14444/1005

Introduction
Spinal fusion is indicated in patients who require segmental stabilization for mechanical
instability such as those with advanced degenerative diseases, infection, deformity,
tumors, congenital malformations and fractures. Spinal fusion is one of the most common
procedures in spinal surgery, with more than 200,000 annual cases performed in the
United States alone.1 Crucial to a successful fusion is bone graft material which is
potentially osteogenic, osteoinductive (osteoinduction involves the stimulation of
osteoprogenitor cells to differentiate into osteoblasts that then begin new bone formation),
and osteoconductive (osteoconduction occurs when the bone graft material serves as a
scaffold for new bone growth that is perpetuated by the native bone). Autograft has long
been the “golden standard” bone graft material, but this is clearly associated with
morbidities and limitations . In addition, despite being the optimal graft solution,
autogenous graft is associated with a certain rate of pseudarthrosis, and the potential
complications and morbidity from the donor site harvesting. There are many reports with
different failure rates in spinal fusions with autografts that in a review article it has been
showed that variation in results could be related to the scarcity of data, heterogeneity of
the trials included, and some methodological defects of studies.6 For this reason, there is
much interest in developing alternative bone graft materials. These would ideally help
facilitating more rapid and robust fusion with less morbidity and higher success. Each
potential product, however, must be established as safe and effective before entering the
clinical arena. In an effort to reduce the amount of iliac graft needed, several bone
substitutes have been developed. Demineralized bone matrix (DBM) is one of the bone
substitutes because it has been shown that the properly demineralized cortical bone
preserves the natural capacity of the native bone proteins and growth factors.7 Although
the initial DBMs contained glycerol as a carrier for the DBM particles, this substance has
been found to be detrimental for host cells and nephrotoxic at high doses and can migrate
within the site or upon irrigation due to the water solubility of the carrier. Newer DBMs
are therefore being developed with improved carrier composition and increased matrix
induction concentration (the concentration of matrix that leads to osteogenesis). Studies
based on the first generation DBMs are available in the literature . Advantages of DBM
over other substitutes include its inherent osteoinductive capacity (unlike tricalcium
phosphate and hydroxyapatite) and availability in large amounts. Presence of the growth
factor β (TGF-β) in the growth plate12 and bone morphogenetic proteins 2 and 7 in human
and rat fetal growth plate have been identified previously.13 These proteins promote the
chondroblastic differentiation of the mesenchymal cells followed by new bone synthesis
by endochondral osteogenesis . For the first time Dehghani et al (2008) used segmental
bovine growth plate in a long bone healing model and they showed that segmental bovine
growth plate has potential osteoinductive and osteoconductive properties.16 Bigham et al
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introduced a novel biomaterial that has been prepared from demineralized calf fetal
growth plate (DCFGP) that showed potential osteoinductive properties in rat sub-
muscular model.17 To the authors' knowledge, there are no clinical studies available on
the safety and efficacy of the DCFGP and additionally it has not been yet compared with
a commercial DBM for spinal fusion. Therefore, the objective of the present preliminary
study was to evaluate the clinical and radiological performance of a novel DCFGP used as
a graft extender in posterolateral lumbar fusion in rat model.

Materials and Methods
The study was approved by the local ethics committee of our Veterinary Faculty, in
accordance with the ethics standards of “Principles of Laboratory Animal Care.”

Animals
Sixteen male Sprague-Dawley rats (4 months age, body weight 200–300 g) were used in
this study. They were maintained in plastic cages in a room with a 12 h-day/night cycle
and an ambient temperature of 21 ºC, and were allowed ad libitum access to water and
standard laboratory pellets.

Preparation of DCFGP
A 6-month old bovine fetus was collected from the local slaughter house. The metacarpal
bones were dissected aseptically and all soft tissue was carefully removed. Radiographs
were taken to determine the growth plate’s margins and limitations. With an oscillating
osteotome, the proximal and distal growth plates were cut and retrieved under aseptic
conditions. The retrieved growth plates were cleaned from the adjacent epiphyseal bone
and primary Spongiosa and were then sliced. Demineralized materials were prepared as
described by Reddi and Huggins.18 The harvested growth plate was cleaned of soft tissue
and marrow, washed in sterile distilled water with continuous stirring, then washed three
times in 95% ethanol for 15 min, rinsed in ether for 15 min, and finally was air dried
overnight. The cleaned and dried growth plate was then milled (Universal Mill A-20;
Tekmer Co, Cincinnati, OH) to obtain 400–700 μm granules and then was demineralized
in 0.6 N HC1 three times for 1 h (50 ml HC1 per g of bone). The growth plate powder
was rinsed with several changes of sterile distilled water to adjust the pH, three times in
95% ethanol and once in ether. The growth plate powder was air dried and stored in
sterile plastic containers at 4 ºC until being used for implantation. This entire process was
performed under sterile conditions (except for the milling) and a sample was cultured to
demonstrate that the specimens contained no bacterial or fungal contamination.

Surgical Technique
All animals were anaesthetised by means of a subcutaneous injection of ketamine 100
mg/kg and xylazine 30 mg/kg. The lumbar region was shaved and surgically prepared,
using three alternating betadine and alcohol washings. A posterior midline incision was
made over the skin of the lumbar spine. Two longitudinal fascial incisions were made 3
mm lateral to the spinus processes. The L4 and L5 transverse processes were exposed and
decorticated bilaterally, using a high-speed burr.
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In the animals of the DCFGP group (n = 8) between the spaces of the transverse processes
were filled with 20 mg of DCFGP, while in those of the DBM group (n=8) between the
space of the transverse process were filled with 20 mg of powder form of commercial
DBM (Osteotech Inc., Eatontown, NJ, USA). The fascia and skin incisions were closed
with 4-0 absorbable suture. The rats were returned to their cages and allowed to eat and
drink ad libitum. The rats were provided with analgesics (Buprenorphine at 0.05 mg/kg
SC) and antibiotics (Enrofloxacin) for 2 days and 7 days postoperatively, respectively.
The skin sutures were removed 10 days after surgery.

Radiological evaluation
Dorso-ventral radiographs were taken in 2, 4 and 6 weeks post-surgery, using a step-
wedge (Aluminum Step Wedges are also used for measurement and analysis of x-ray
beam quality. As in all tests, it is necessary to establish an acceptable baseline or standard
for the x-ray unit’s performance) to calibrate radiodensity. The implanted area was
radiographed using low energy X-ray (Faxitron, Hewlett Packard, Model 43855B,
McMinnville, OR) with an exposure time of 30 s (15 kV). Radio-opacity of the implanted
area was scored using range from 0 (minimally opaque) to 4 (most opaque) by an
investigator blinded to treatment mode.

Determination of fusion by manual palpation
At the end of the 42nd postoperative day all animals were pharmacologically euthanized
(For euthanasia an overdose of ketamin hydrochloride 100 mg/kg were used. This agent
was injected intracardiac and produced sudden smooth death19), the spines were dissected
and extracted. An independent observer blind to study assessed the spines for movement
within the L4 and L5 intervertebral space by manual palpation and visualization. The
spines were categorized as either fused or not fused.

Gross and histopathological evaluation
After determining the fusion criteria by manual palpation all specimens were grossly and
histopathologically evaluated. At this stage the operated transverse processes were
evaluated for gross signs of healing. Examination and blinded scoring of the specimens
included presence of bridging bone, indicating a complete union (+3 score), presence of
cartilage (+2 score), soft tissue or cracks within the defect indicating a possible unstable
union (+ 1 score), or complete instability at the defect site indicating no union (0 score).
The implants were then removed from each animal and paraffin wax was embedded
following fixation in formalin and formic acid decalcification. The sections of 5–6 μm
thick (Microrn HM 340 E microtome) were stained with hematoxylin eosin (HE) and
examined under a light microscope. All histopathological scores were evaluated using
Emery’s histopathological criteria.20

Statistical analysis
Manual palpation data were compared by chi-square evaluation. The radiological and
histopathological data were compared by pair wise group comparisons Mann-Whitney U
test. When the P-values were found to be less than 0.05 it was considered statistically
significant (SPSS version 17 for windows, SPSS Inc, Chicago, USA).
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Results
Manual palpation results
The spines of the implanted rats of both DCFGP and commercial DBM groups showed
bony fusion between the L4 and L5 and were not able to generate anterior-posterior or
lateral movement by manual palpation at this area. There was no significant statistical
difference among the two groups by chi-square evaluation (P=1.0 ).

Radiological results
There was no intraoperative and postoperative death during the study. None of the rats
sustained a wound infection or surgery complication. The radiographs did not show
significant differences between the two groups at 14th, 28th and 42nd postoperative days.
The radio-opacity of the implanted area showed gradual increasing from 14th, to 42nd

postoperative days (Table 1). At the 42nd postoperative day, new bone formation as
evidenced by a bridge between L4 and L5 was visualized in all rats implanted with
DCFGP and commercial DBM. An increased radio-opacity with discrete foci of densities
and imparting a granular appearance to the images was observed in in the injured areas of
the animals of the two groups on the 42nd postoperative day. Radiographs also showed
that there is excess bone formation at more than the single L4-5 operated level (Figure 1).

Table 1. Radiographical findings for spinal fusion at various post-operative intervals.
Postoperative
days

DCFGF

(n = 8; Median(Minimum-
Maximum))

Commercial DBM

(n = 8; Median(Minimum-
Maximum))

P (pairwise Mann-Whitney U
Test)

14 3(2-4) 3(2-4) 0.6

28 4(2-4) 3(2-4) 0.4

42 4(3-4) 4(2-4) 0.1
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Gross and histopathological evaluation
The implanted areas of the treated rats of both groups showed various amounts of new
bone formation. The union scores of the rats administered with DCFGP and commercial
DBM were not statistically significant (Table 2 ). The union scores at macroscopic level
closely correlated with the radiographic union scores on day 42 post injury.

Staining of the specimens with hemotoxylin and eosin revealed that intertransverse
process implantation of the DCFGP and commercial DBM lead to fibrocartilaginous
response with apparent bone formation without any inflammatory response. The newly
formed bone tissue was observed in all implanted areas on the 42nd day after operation in
the two groups. Bone tissue which had an optimum bone formation score was observed
on the 42nd postoperative day (Figure 1, Table 1). Differentiation of the cartilaginous
tissue to a mineralized foci in this highly vascular area resulted to a bony bridge
architecture and formation of an ossicle filled with bone marrow elements (day 42)
(Figure 2).

Table 2. Bone production measurements at macroscopic and microscopic level.

Bone type
evaluation

DCFGP (n = 8; Median (Minimum-
Maximum))

Commercial DBM (n = 8; Median (Minimum-
Maximum))

P (Mann-Whitney U
test)

Macroscopic union* 2(2-3) 2(2-3)

0.6

Fig. 1. Radiographic evaluation on the 14th (A and B), 28th (C and D)
and 42nd (E and F) postoperative days. Samples of DCFGP treated
spine with fusion (A, C and E) and commercial treated sample (B, D,
and F). The red arrows identify the radiopaque tissue masses on both
sides of spine at the L4 and L5 segments.
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Microscopic
evaluation†

5 (5-7) 4 (4-6)

0. 1

* Complete union (+3 score), presence of cartilage (+2 score), soft tissue or cracks
within the defect indicating a possible unstable union (+ 1 score), complete instability
at the defect site indicating nonunion (0 score)

† Empty (0 score), fibrous tissue only (1 score), more fibrous tissue than fibrocartilage
(2 score), more fibrocartilage than fibrous tissue (3 score), fibrocartilage only (4
score), more fibrocartilage than bone (5 score), more bone than fibrocartilage (6 score)
and bone only (7 score)

Discussion
To the authors’ knowledge this is one of the first studies, which presents new data on the
spine fusion by the DCFGP and compare it with the commercial DBM in rat model. Rat is
one of the smallest animals used for spine fusion studies (Sprague-Dawley being the most
common). Because of its small size, the rat has only been used for noninstrumented dorsal
(“posterior”) or dorsolateral (“posterolateral”) fusions. The animals are very easily
handled and housed, resilient to anesthesia, relatively resistant to infection, and cost-
effective for preliminary investigations.21

Fig. 2. Histology of 6-week samples of fusion by DCFGP (A and B) and
commercial DBM (C and D). Immature and woven bone in DCFGP
(A, 10X H & E Staining). Trabecular bone (white arrow) and marrow
formation (black arrow) are seen in the fusion area of the same figure
in a high magnification view (B, 40X H&E Staining). More mature
bone (black right angle) with osteocyte cells are seen in the lesion of
the commercial DBM group (C, 10X H & E Staining). Higher power
view of the same picture shows bony tissue (white arrow) and marrow
formation (black arrow) (D, 40X H&E Staining)
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It has been shown that commercially available DBM in the surgical management of
osseous defects, arthrodeses, and reconstructive procedures have been promising. In
general, DBM grafts have supported healing in a timely fashion without complication and
with a diminished need to harvest bone from a secondary operative site.22 Also, in an
effort to augment the available grafting material as well as to increase spinal fusion rates,
the utilization of a demineralized bone matrix (DBM) as a graft extender or replacement
is common.23 Therefore, in the present study commercially available DBM was used as a
standard control group for house made DCFGP.

Because there are many reports with failure rates of spinal fusion with autografts (as a
gold standard) it is predictable that spinal fusion without any materials (as negative
group) or even with autograft (as a positive group) would not be occurred at all in
decorticated area therefore in the present study we had no negative nor positive groups in
our study.

In this study, the spinal fusion of the animals of both groups demonstrated more advanced
osteogenic potential and resulted in proper fusion of the transverse process of lumbar
vertebra.

The manual palpation, radiological, gross and histopathological findings of the present
study indicate a good capability in the DCFGP in spinal fusion similar to that of the
commercial DBM, by the end of the 6 weeks post-surgery.

In a recent study, it has been shown that satisfactory ectopic bone formation occurred in
the submuscular area of a rat model with xenogenic demineralized bovine foetal growth
plate without occurring any complication.17 In addition, when the segmental calf fetal
growth plate was grafted in the radial bone defect it resulted in a positive bone healing
process .

Presence of transforming growth factor-β (TGF-β) and bone morphogenetic proteins
(BMPs 2 and 7) in the growth plate12 have been identified in human and rat fetal growth
plate.13 These proteins promote chondroblastic differentiation of the mesenchymal cells,
and result in new bone synthesis by endochondral osteogenesis.15 We proposed that in our
study, mentioned growth factors released from DCFGP in the implanted area and lead to
new bone formation and also spinal fusion in rats.

The primary osteoinductive components of the demineralized bone matrix (DBM) are a
series of low-molecular-weight glycoproteins including the bone morphogenetic proteins
(BMPs). Decalcification of cortical bones exposes these osteoinductive growth factors
buried within the mineralized matrix, thereby enhancing the bone formation process.
These proteins promote the chondroblastic differentiation of the mesenchymal cells,
followed with new bone synthesis by the endochondral osteogenesis . In the present study
the commercial DBM had possibly this mechanism of action and lead to spinal fusion,
however, in the DCFGP cases the authors propose that DCFGP, in the present study,
resulted in release of the TGF-β and BMPs 2 and 7 and these reagents were exposed to
the implanted site and enhanced bone formation and lead to spinal fusion. Of course two
previous study by Bae, H. et al showed that The relative quantities of BMPs in DBMs are
low, in the order of 1 x 10(-9) g of BMP/g of DBM. There is higher variability in
concentration of BMPs among 3 different lots of the same DBM formulation than among
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different DBM formulations. This variability questions DBM products' reliability and,
possibly, efficacy in providing consistent osteoinduction . In our study we did not perform
any determination tests on quantity of BMPs in the DCFGP and also commercial DBM,
however each two biomaterials lead to spinal fusion in rats of study.

In another study spinal fusion were reported with different rates of fusion with three
different commercial DBM however there is no fusion rate with autogenous implantation
in rat model.23 This finding also support our finding with DBM usage in spinal fusion.

In the present study radiographs showed that there is excess bone formation at more than
the single L4-5 operated level this phenomena may be related to expanded biomaterials in
the surgical sites that lead to more extended bone formation. We suggest that probably 20
mg of biomaterial in rat model may be too much and it should be examined in large
animal model.

In the present study neither DCFGP nor commercial DBM elicited any inflammatory
reaction in the grafted site. It has been reported that the demineralization process destroys
the antigenic materials in bone, making DBM less immunogenic so that it does not induce
immunological reaction by the host,29 therefore, the authors did not observe any
inflammatory reaction throughout the histopathological evaluation. In addition we
performed histopathological evaluation at the end of study (42nd postoperative day) and
there was no evidence of any inflammatory responses although inflammation may have
been present earlier.

It seems the spinal fusion in the implanted site of the animals of the DCFGP group could
be related to BMPs releasing from the demineralized grafted bovine fetal growth plate,
however, the authors suggest designing further studies in this subject such as measuring at
least one growth and differentiate factor to help in resolving some aspects of the
mechanism of action of this product. The another missing experiment that we might
perform it is biomechanical testing or immunohistochemistery staining (this would enable
to better judge bone formation) that we pursue a definitive study with earlier and more
evaluation points.

The results of this preliminary study indicate that satisfactory spinal fusion of the rat
model occurred with the xenogenic demineralized bovine fetal growth plate (same as
commercial DBM) and complications were not identified. Further studies are needed to
evaluate the long-term effects of this new biomaterial on spinal fusion to document the
use of this graft substitute in various clinical situations. DCFGP preparation is cost-
effective and readily available, in addition in clinical using of commercially available
DBM (from human being) always there is awareness about affecting with transmissible
infections such as HIV, Hepatitis transferring to the host however our DCFGP was made
from source of calf fetal that there is not awareness about dangerous infection transfer in
the host.

References
1. Boden SD. Overview of the biology of lumbar spine fusion and principles for

selecting a bone graft substitute. Spine 2002;27:S26-S31.

 by guest on April 9, 2024http://ijssurgery.com/Downloaded from 

http://dx.doi.org/10.1097/00007632-200208151-00007
http://dx.doi.org/10.1097/00007632-200208151-00007
http://ijssurgery.com/


2. Ludwig SC, Boden SD. Osteoinductive bone graft substitutes for spinal fusion A
Basic Science Summary. Orthopedic Clinics of North America 1999;30:635-645.

3. Qiu QQ, Shih MS, Stock K, et al. Evaluation of DBM/AM composite as a graft
substitute for posterolateral lumbar fusion. Journal of Biomedical Materials Research
Part B 2007;82:239-245.

4. Silber JS, Anderson DG, Daffner SD, et al. Donor site morbidity after anterior iliac
crest bone harvest for single-level anterior cervical discectomy and fusion. Spine
(Phila Pa 1976) 2003;28:134-139.

5. Younger E, Chapman M. Morbidity at bone graft donor sites. J Orthop Trauma
1998;3:192-195.

6. Lee CS, Hwang CJ, Lee DH, et al. Fusion rates of instrumented lumbar spinal
arthrodesis according to surgical approach: a systematic review of randomized trials.
Clin Orthop Surg 2011;3:39-47.

7. Urist MR. Bone: formation by autoinduction. Science 1965;150:893-899.
8. Bostrom MP, Yang X, Kennan M, et al. An unexpected outcome during testing of

commercially available demineralized bone graft materials: how safe are the
nonallograft components? . Spine 2001;26:1425-1428.

9. Wang JC, Kanim LE, Nagakawa IS, et al. Dose-dependent toxicity of a commercially
available demineralized bone matrix material. Spine 2001;26:1429-1435.

10. Cammisa FPJ, Lowery G, GarWn SR, et al. Two-year fusion rate equivalency
between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective
controlled trial employing a side-by-side comparison in the same patient. Spine
2004;29:660-666.

11. Fernyhough JC, Schimandle JJ, Weigel MC, et al. Chronic donor site pain
complicating bone graft harvesting from the posterior iliac crest for spinal fusion.
Spine 1992;17:1474-1480.

12. Rosier RN, O’Keefe RJ, Hicks DG. The potential role of transforming growth factor
beta in fracture healing. Clinical Orthopedics Relatated Research
1998;355:S294-S300.

13. Anderson HC, Hodges PT, Aguilera XM, et al. Bone morphogenetic protein (BMP)
localization in developing human and rat growth plate, metaphysis, epiphysis, and
articular cartilage. Journal of Histochemistry and Cytochemistry 2000;48:1493-1502.

14. Urist MF, Sato K, Brownell AG. Human bone morphogenetic protein. Proceedings of
the Society for Experimental Biology and Medicine Society for Experimental
Biology and Medicine (New York, NY) 1983;194-199.

15. Urist MR, Mikulski AJ, Lietz A. Solubilized and insolubilized bone morphogenetic
protein. Proceedings of the National Academy of Sciences of the United States of
America 1979;76:1928-1832.

16. Dehghani SN, Bigham AS, Torabi Nezhad S, et al. Effect of bovine fetal growth plate
as a new xenograft in experimental bone defect healing: radiological,
histopathological and biomechanical evaluation. Cell and Tissue Banking
2008;9:91-99.

17. Bigham AS, Shadkhast M, Bigham Sadegh A, et al. Evaluation of osteoinduction
properties of the demineralized bovine foetal growth plate powder as a new
xenogenic biomaterial in rat. Research in Veterinary Science 2011;91:306-310

18. Reddi AH, Huggins C. Biochemical sequences in the transformation of normal
fibroblasts in adolescent rats. Proceedings of the National Academy of Sciences of
the United States of America 1972;1601-1605.

 by guest on April 9, 2024http://ijssurgery.com/Downloaded from 

http://dx.doi.org/10.1016/s0030-5898(05)70116-4
http://dx.doi.org/10.1016/s0030-5898(05)70116-4
http://dx.doi.org/10.1002/jbm.b.30726
http://dx.doi.org/10.1002/jbm.b.30726
http://dx.doi.org/10.1002/jbm.b.30726
http://dx.doi.org/10.1097/00007632-200301150-00008
http://dx.doi.org/10.1097/00007632-200301150-00008
http://dx.doi.org/10.1097/00007632-200301150-00008
http://dx.doi.org/10.1097/00005131-198909000-00002
http://dx.doi.org/10.1097/00005131-198909000-00002
http://dx.doi.org/10.4055/cios.2011.3.1.39
http://dx.doi.org/10.4055/cios.2011.3.1.39
http://dx.doi.org/10.4055/cios.2011.3.1.39
http://dx.doi.org/10.1126/science.150.3698.893
http://dx.doi.org/10.1097/00007632-200107010-00007
http://dx.doi.org/10.1097/00007632-200107010-00007
http://dx.doi.org/10.1097/00007632-200107010-00007
http://dx.doi.org/10.1097/00007632-200107010-00008
http://dx.doi.org/10.1097/00007632-200107010-00008
http://dx.doi.org/10.1097/01.brs.0000116588.17129.b9
http://dx.doi.org/10.1097/01.brs.0000116588.17129.b9
http://dx.doi.org/10.1097/01.brs.0000116588.17129.b9
http://dx.doi.org/10.1097/01.brs.0000116588.17129.b9
http://dx.doi.org/10.1097/00007632-199212000-00006
http://dx.doi.org/10.1097/00007632-199212000-00006
http://dx.doi.org/10.1097/00007632-199212000-00006
http://dx.doi.org/10.1097/00003086-199810001-00030
http://dx.doi.org/10.1097/00003086-199810001-00030
http://dx.doi.org/10.1097/00003086-199810001-00030
http://dx.doi.org/10.1177/002215540004801106
http://dx.doi.org/10.1177/002215540004801106
http://dx.doi.org/10.1177/002215540004801106
http://dx.doi.org/10.3181/00379727-173-41630
http://dx.doi.org/10.3181/00379727-173-41630
http://dx.doi.org/10.3181/00379727-173-41630
http://dx.doi.org/10.1073/pnas.76.4.1828
http://dx.doi.org/10.1073/pnas.76.4.1828
http://dx.doi.org/10.1073/pnas.76.4.1828
http://dx.doi.org/10.1007/s10561-008-9062-7
http://dx.doi.org/10.1007/s10561-008-9062-7
http://dx.doi.org/10.1007/s10561-008-9062-7
http://dx.doi.org/10.1007/s10561-008-9062-7
http://dx.doi.org/10.1016/j.rvsc.2010.12.001
http://dx.doi.org/10.1016/j.rvsc.2010.12.001
http://dx.doi.org/10.1016/j.rvsc.2010.12.001
http://dx.doi.org/10.1073/pnas.69.6.1601
http://dx.doi.org/10.1073/pnas.69.6.1601
http://dx.doi.org/10.1073/pnas.69.6.1601
http://ijssurgery.com/


19. Rigalli A, Elina Di Loreto V. Experimental surgical models in the laboratory rat.
New York: Taylor & Francis Group, 2009.

20. Emery SE, Brazinski MS, Koka A, et al. The biological and biomechanical effects of
irradiation on anterior spinal bone grafts in a canine model. The Journal of Bone and
Joint Surgery 1994;76:540-548.

21. Drespe IH, Polzhofer GK, Turner AS, et al. Animal models for spinal fusion. The
Spine Journal 2005;5:209-216.

22. Russell JL, Block JE. Clinical utility of demineralized bone matrix for osseous
defects, arthrodesis, and reconstruction: impact of processing techniques and study
methodology. Orthopedics 1999;22:524.

23. Wang JC, Alanay A, Mark D, et al. A comparison of commercially available
demineralized bone matrix for spinal fusion. European Spine Journal
2007;16:1233-1240.

24. Malloy KM, Hilibrand AS. Autograft versus allograft in degenerative cervical
disease. Clinical Orthopaedics and Related Research 2002;394:27-38.

25. Bigham AS, Dehghani SN, Shafiei Z, et al. Experimental bone defect healing with
xenogenic demineralized bone matrix and bovine fetal growth plate as a new
xenograft: radiological, histopathological and biomechanical evaluation. Cell and
Tissue Banking 2009;10:33-41.

26. Oshin AO, Stewart MC. The role of bone morphogenetic proteins in articular
cartilage development, homeostasis and repair. Veterinary and comparative
orthopaedics and traumatology 2007;20:151.

27. Bae H, Zhao L, Zhu D, et al. Variability across ten production lots of a single
demineralized bone matrix product. J Bone Joint Surg Am 2010;92:427-435.

28. Bae HW, Zhao L, Kanim LE, et al. Intervariability and intravariability of bone
morphogenetic proteins in commercially available demineralized bone matrix
products. Spine (Phila Pa 1976) 2006;31:1299-1306; discussion 1307-1298.

29. Bauer TW, Muschler GF. Bone graft materials: An overview of the basic science.
Clin Orthop Rel Res 2000;371:10-27.

Corresponding author
Dr. A. S Bigham, Department of Veterinary Surgery and Radiology, Faculty of
Veterinary Medicine, Shahrekord University, Shahrekord, Iran. P. O. Box: 115.
email:dr.bigham@gmail.com.

Acknowledgements
The authors would like to thank the authorities of the Veterinary School, Shahrekord
University for their financial support and cooperation.

Disclosures
All authors declare no relevant financial disclosures.

Copyright © 2014 ISASS - International Society for the Advancement of Spine Surgery.
To see more or order reprints or permissions, see http://ijssurgery.com.

 by guest on April 9, 2024http://ijssurgery.com/Downloaded from 

http://dx.doi.org/10.1201/9781420093278
http://dx.doi.org/10.1201/9781420093278
http://dx.doi.org/10.1016/j.spinee.2005.02.013
http://dx.doi.org/10.1016/j.spinee.2005.02.013
http://dx.doi.org/10.1007/s00586-006-0282-x
http://dx.doi.org/10.1007/s00586-006-0282-x
http://dx.doi.org/10.1007/s00586-006-0282-x
http://dx.doi.org/10.1097/00003086-200201000-00004
http://dx.doi.org/10.1097/00003086-200201000-00004
http://dx.doi.org/10.1007/s10561-008-9107-y
http://dx.doi.org/10.1007/s10561-008-9107-y
http://dx.doi.org/10.1007/s10561-008-9107-y
http://dx.doi.org/10.1007/s10561-008-9107-y
http://dx.doi.org/10.1160/vcot-07-02-0018
http://dx.doi.org/10.1160/vcot-07-02-0018
http://dx.doi.org/10.1160/vcot-07-02-0018
http://dx.doi.org/10.2106/jbjs.h.01400
http://dx.doi.org/10.2106/jbjs.h.01400
http://dx.doi.org/10.1097/01.brs.0000218581.92992.b7
http://dx.doi.org/10.1097/01.brs.0000218581.92992.b7
http://dx.doi.org/10.1097/01.brs.0000218581.92992.b7
http://dx.doi.org/10.1097/00003086-200002000-00003
http://dx.doi.org/10.1097/00003086-200002000-00003
mailto:dr.bigham@gmail.com
http://ijssurgery.com/

	Spinal fusion with demineralized calf fetal growth plate as novel biomaterial in rat model: a preliminary study
	Abstract 
	Background
	Methods
	Results
	Conclusion

	Introduction
	Materials and Methods
	Animals
	Preparation of DCFGP
	Surgical Technique
	Radiological evaluation
	Determination of fusion by manual palpation
	Gross and histopathological evaluation
	Statistical analysis

	Results
	Manual palpation results
	Radiological results
	Table 1. Radiographical findings for spinal fusion at various post-operative intervals.
	Fig. 1. Radiographic evaluation on the 14th (A and B), 28th (C and D) and 42nd (E and F) postoperative days. Samples of DCFGP treated spine with fusion (A, C and E) and commercial treated sample (B, D, and F). The red arrows identify the radiopaque tissue masses on both sides of spine at the L4 and L5 segments.

	Gross and histopathological evaluation
	Table 2. Bone production measurements at macroscopic and microscopic level.
	Fig. 2. Histology of 6-week samples of fusion by DCFGP (A and B) and commercial DBM (C and D). Immature and woven bone in DCFGP (A, 10X H & E Staining). Trabecular bone (white arrow) and marrow formation (black arrow) are seen in the fusion area of the same figure in a high magnification view (B, 40X H&E Staining). More mature bone (black right angle) with osteocyte cells are seen in the lesion of the commercial DBM group (C, 10X H & E Staining). Higher power view of the same picture shows bony tissue (white arrow) and marrow formation (black arrow) (D, 40X H&E Staining)


	Discussion
	References
	Corresponding author
	Acknowledgements
	Disclosures


