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ABSTRACT

Image guidance (IG) and robotic-assisted (RA) surgery are modern technological advancements that have provided

novel ways to perform precise and accurate spinal surgery. These innovations supply real-time, three-dimensional
imaging information to aid in instrumentation, decompression, and implant placement. Although nothing can replace
the knowledge and expertise of an experienced spine surgeon, these platforms do have the potential to supplement the

individual surgeon’s capabilities. Specific advantages include more precise pedicle screw placement, minimally invasive
surgery with less reliance on intraoperative fluoroscopy, and lower radiation exposure to the surgeon and staff. As these
technologies have become more widely adopted over the years, novel uses such as tumor resection have been explored.

Disadvantages include the cost of implementing IG and robotics platforms, the initial learning curve for both the
surgeon and the staff, and increased patient radiation exposure in scoliosis surgery. Also, given the relatively recent
transition of many procedures from inpatient settings to ambulatory surgery centers, access to current devices may be
cost prohibitive and not as readily available at some centers. Regarding patient-related outcomes, much further research

is warranted. The short-term benefits of minimally invasive surgery often bolster the perioperative and early
postoperative outcomes in many retrospective studies on IG and RA surgery. Randomized controlled trials limiting
such confounding factors are warranted to definitively show potential independent improvements in patient-related

outcomes specifically attributable to IG and RA alone. Nonetheless, irrespective of these current unknowns, it is clear
that these technologies have changed the field and the practice of spine surgery. Surgeons should be familiar with the
potential benefits and tradeoffs of these platforms when considering adopting IG and robotics in their practices.

Special Issue

INTRODUCTION

During the last several decades, image guidance
(IG) and robotic-assisted (RA) systems have be-
come increasingly used for the performance of safe
and effective spinal surgery. Both are associated
with an initial investment and learning curve but
have the potential to increase the accuracy of
instrumentation, potentiate more efficient and faster
surgery, utilize less invasive surgical approaches,
and decrease radiation exposure.1

In the past, spinal surgeons relied solely on
freehand and fluoroscopically guided techniques,
using orthogonal imaging and anatomic exposure to
guide pedicle screw insertion and neural decom-
pression. While navigation and robotics cannot
supplant the anatomic understanding and feel of
an experienced spine surgeon’s hands, they do have
the potential to augment the surgeon to achieve

better outcomes and perform surgery in novel,

possibly better ways. These technologies can be

especially advantageous in situations where the

normal anatomy is not present, such as transitional

lumbosacral vertebrae, lytic spondylolisthesis, and

high-riding vertebral arteries at C2.

Image-guided navigation systems combine intra-

operative imaging with computerized referenced

navigation systems to provide real-time stereotactic

imaging, allowing for dynamic repositioning and

feedback of navigated instruments. Options for

imaging include standard 2-dimensional (2D) fluo-

roscopy, fluoroscopy reformatted into 3D, and

computed tomography (CT). In most platforms,

an infrared registration device is affixed to the

patient, such as into the iliac crest or clamped to a

spinous process. Following this, intraoperative

imaging is performed to coregister the patient’s
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imaging to the device, providing a stable reference
point for the navigated instruments, reducing or
eliminating the need for intraoperative fluoroscopy.
Alternatively, some platforms have a trackerless
option with manual registration of bone surfaces in
relation to the position of the IG system. Some have
also utilized electromagnetic sensors which do not
require line-of-sight between the instruments and
array. The predominant application of IG is the
planning and placement of pedicle screws, but most
systems include a variety of instrumentation such as
high-speed burrs, drills, taps, and rongeurs.

Currently, a wide variety of IG navigation
systems are available for use. Each imaging system
is paired with a proprietary computer navigation
software platform. Most have certain defining
features. The O-arm with StealthStation S8 (Med-
tronic, Minneapolis, Minnesota) uses a fluoroscopy
unit on a circular track that encloses around the
operative table. The software platform utilizes an
algorithm that reformats the combination of 2D
images into a 3D reconstruction. The end result is
similar in appearance to a CT scan. The Airo iCT
with Curve or VectorVision (Brainlab, Munich,
Germany) is a true CT platform, and the unit itself
is therefore more similar in appearance to a
standard CT scanner. It features improved soft
tissue resolution and a relatively robust size for
imaging larger patients. The Ziehm Vision RFD 3D
(Ziehm Imaging, Orlando, Florida) is a motorized,
automated C-arm that spins 1808 around the
patient. It has the capability to take standard
fluoroscopic images and provide volume-rendered,
multiplanar reconstructed 3D imaging for IG.

There are currently a number of commercial
robotic systems available as well. Robotics systems
fall into 2 major categories. The first are superviso-
ry-controlled systems, in which the surgeon preop-
eratively plans the surgery using the provided
software and then supervises the robot as it
autonomously performs steps in the operation.
The second type is a shared-control system in which
the surgeon manually controls the instruments with
the robot providing feedback and fine-tuning. This
latter type is the function of all currently approved
spinal robotics systems.2 The Mazor SpineAssist,
which was the first to receive US Food and Drug
Administration approval, is currently the most
published robotic system. The system uses a device
that is mounted to the patient using 2 Steinman
pins, allowing for shared control with 6 degrees of

freedom. The most recent iteration of the Mazor
robot is a result of Medtronic’s acquisition of
Mazor Robotic, combining the Mazor system with
the existing Stealth IG navigation platform. It
features what is now a universal element in the
most modern systems: a fully automated robotic
arm. Other systems with similar capabilities include
the Excelsius GPS (Globus, Audubon, Pennsylva-
nia), the ROSA ONE (Zimmer Biomet, Warsaw,
Indiana), and the recently released Cirq (Brainlab,
Munich, Germany). Planning of screw trajectories is
a common feature that is available after uploading a
CT into the provided software.

SAFETY

One of the foremost advantages to IG and RA
platforms is the potential reduction in radiation
exposure to the patient, surgeon, and operating
room staff.3 Strategies for decreasing exposure
during fluoro-guided instrumentation include prop-
er protective equipment, minimizing fluoroscopic
dose and use, using a ‘‘hands-off’’ technique during
pedicle screw instrumentation, and collimation of
the x-ray beam.4–6

When compared to fluoro-guided techniques in
adult lumbar spinal surgery, image-guided naviga-
tion has a significant potential to minimize exposure
to the surgeon and staff.7 The patient benefit is
much less certain. Image-guided minimally invasive
surgery (MIS) procedures likely result in less
exposure, but open procedures may result in an
equivalent or higher dose secondary to the intraop-
erative CT. A randomized control trial by Villard et
al8 comparing exposure during open posterior
lumbar instrumentation to CT IG showed a nearly
10-fold decrease in exposure to the surgeon and staff
and a nonsignificant trend towards lower patient
exposure. Other studies have shown higher patient
exposure.9 A decrease in patient and staff exposure
has been shown when comparing IG MIS lumbar
surgery to a fluoro-guided technique.10 In adult MIS
scoliosis correction, IG may result in a lower patient
exposure.11 Similar benefits have been shown with
MIS transforaminal lumbar interbody fusion
(TLIF).12,13

The use of IG in long segment constructs in
scoliosis surgery for radiation reduction is more
controversial. Freehand techniques combined with
intermittent fluoroscopy are commonly used in the
treatment of pediatric idiopathic scoliosis. These
more traditional techniques have been shown to
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result in a lower dose exposure to the patient than
CT IG.14–16 Lower-dose protocols have been
developed to mitigate this problem in IG and RA
surgery.17,18

ACCURACY

Accurate pedicle screw placement is an essential
component of spine surgery. Pedicle screw misplace-
ment is fairly common, with rates reported up to as
high as 40 to 50%.19–21 Severely misplaced placed
screws more than 2–4 mm off, particularly in the
inferior or medial directions, can result in compli-
cations such as dural tears, nerve root and spinal
cord injury, significant bleeding, injury to visceral
organs, and life-threating events.22 Fortunately,
symptomatic malposition requiring revision is not
a frequent occurrence, even with traditional meth-
ods, and in 1 large series only 0.8% of patients
required a return to the operating room to correct
significantly malpositioned screws placed with the
freehand technique. Most of the 9.0% of screws that
were malpositioned involved a pedicle wall breach,
lateral being more common than medial and
thoracic more frequent than lumbar.23 Despite the
fortunate fact that slight malposition is often
clinically silent, maximally accurate pedicle screw
insertion with excellent purchase is desired in all
cases because even minor malposition can some-
times result in complications.

Multiple trials have investigated whether IG
navigation improves accuracy versus freehand
technique and 2D fluoroscopy.24 A number of single
studies have consistently reported a 95% accuracy
rate of CT IG-navigated cohorts compared with
conventional freehand and fluoro-guided methods
which were roughly 10% less accurate.24–27 One
study also reported less need for screw repositioning
intraoperatively compared to freehand, and several
studies have reported pedicle screw replacement
around 5% less frequently in IG groups compared
with other methods.17,27,28 The reported differences
in large-scale meta-analyses have been less dramatic.
A 2019 comprehensive systematic review and meta-
analysis pooling more than 50&thinsp,000 screws
demonstrated that CT IG navigation was 95.5%
accurate versus 93.1% for fluoro-guided and 91.5%
for freehand.29 Interestingly, the revision rate for
fluoro-guided was higher than freehand and IG,
which were similar. Another meta-analysis reported
that using IG resulted in a reduction of pedicle
perforations measuring more than 2 mm compared

to the freehand technique.30 It should be noted that

the authors noted heterogeneity in these results.

Subgroup analysis demonstrated regional differenc-
es that suggested variability in surgeon skill and

potentially more challenging patient anatomy due to

the ethnic groups being treated. The findings also
suggested that less experienced surgeons who were

not yet proficient with traditional techniques were

more accurate with the IG systems.31

Regarding pedicle screw placement with robotic
systems, a recent meta-analysis of 9 randomized

control trials concluded that RA surgery resulted in

more accurate pedicle screw placement than free-
hand surgery. However, surgery times were longer

in the RA cases and postoperative length of stay

along with patient outcome scores showed no
significant difference between the groups.32 Kim et

al33 reported better convergence orientation for

pedicle screws along with fewer facet joint violations
with the robot-assisted surgeries.

Another important consideration during pedicle

screw instrumentation of the lumbosacral spine is

preservation of the proximal facet joint at the
cranial end of the construct. Violation may predis-

pose to higher rates of adjacent segment disease.34–

36 Lower rates of cranial facet joint violation have
been reported using a percutaneous IG technique

compared with an open technique.37,38 Similar

improvements have been shown in RA surgery for
both standard pedicle screw instrumentation and

with screws in the cortical bone trajectory.39–41

Although thoracic and lumbar pedicle screw

instrumentation comprise the majority of guided
instrumentation, IG and robotics have also been

applied in the cervical spine. Zhang et al42 reported

96.5% accuracy in 144 posterior cervical pedicle
screws placed with CT IG. There were 5 pedicle

breaches but no major complications in the short

term. Theologis and Burch43 reported 99% safely
placed screws, with 1 medial breach causing a C5

root palsy. A recent well-constructed randomized

controlled trial by Fan et al44 reported excellent

results with robot-assisted cervical instrumentation.
Other authors have cautioned that even with the

advantage of CT-based IG, the risk of pedicle

perforation in the middle cervical spine is high.45–47

Other cervical pathology treated using IG naviga-

tion includes posterior C1–C2 fusion for atlantoax-

ial instability, C1–C2 fixation for Hangman’s
fracture, odontoid screw fixation, os odontoideum
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fixed with Magerl and Harms techniques, and
occiput-C2 fusion.48–53

Image-guided and RA techniques have also been
explored for sacral and iliac fixation. Most authors
report good results placing S2 alar iliac screws using
both IG and RA.54–58 Lumbosacral fixation has also
been described.59 Santos et al60 demonstrated in a
cadaver study that IG may improve the insertional
torque of iliac screws by achieving a longer
trajectory using 3D IG.

EFFICIENCY

Another critical factor in adopting new technol-
ogy is the surgeon and staff overcoming the learning
curve and becoming efficient with the use of the
platform. The literature suggests that IG systems are
relatively easily learned and integrated for simpler
techniques, and efficiency increases over time with
regard to workflow and screw placement time.61,62

Ryang et al62 reported their experience adopting IG
navigation in their hospital. The overall workflow,
which involves surgeons and operating room staff
familiar with the system and 3D acquisition,
improves rapidly at the outset and then less
dramatically during the 12 months following imple-
mentation of the system. Routine use of the
technology during most cases normalizes utilization
and may improve this efficiency over time.

In terms of pedicle screw instrumentation, there
does seem to be a benefit with experienced
operators. In a study examining thoracic pedicle
screw accuracy with navigated and fluoro-guided
techniques, the average insertion time per pedicle
screw was noted to be more than 2 minutes greater
in the fluoro-guided group.26 Other studies have
similarly noted that navigation results in either an
equivalent or reduced operative time for surgeons
practiced in IG techniques.10,11,63–65

For residents and fellows training on a robotics
platform, Urakov et al66 noted there was a
nonsignificant trend towards more efficiency with
experience, but even junior residents were able to
perform instrumentation in a reasonable time. It has
been reported that competent supervision should be
provided for the first 25 to 30 cases, as there is an
increased incidence of pedicle wall breach and screw
revision in this range.67,68

Regarding navigated interbody instrumentation,
Xu et al69 published their experience with incorpo-
rating IG into their TLIF technique. They noted
that operative time had reached an efficient level

after 25 cases. It should be acknowledged that the
surgeon was already practiced at IG spinal surgery
and was also performing other navigated cases
during the study period.

COMPLICATIONS REDUCTION

Improving patient outcomes and reducing the
rate of complications is a constant consideration in
spinal surgery, particularly when considering the
cost and learning curve of adopting a new platform
and workflow. The comparative results of IG and
RA have been encouraging but mixed. Most studies
have not shown any dramatic differences. Khanna
et al65 compared single-level MIS TLIF using fluoro
or CT IG and found that intraoperative blood loss
was actually higher in the IG group. They found no
difference in all other perioperative and short-term
clinical outcomes, such as surgical time, complica-
tions, and hospital length of stay.70 In a well-
constructed retrospective cohort comparing IG
navigation to fluoroscopy, Vaishnav et al10 reported
similar clinical outcomes, operative variables, and
radiation exposure when performing microdiscec-
tomy, laminectomy, and MIS TLIF. In a random-
ized study by Park et al71 comparing RA to
conventional pedicle screw instrumentation for
posterior interbody fusion, there were no differences
in adjacent segment disease or clinical outcomes at 2
years.

In contrast, some studies have shown some
promising results. One study of 413 cases using
RA guidance for pedicle screw placement noted a
lower rate of complications than previously pub-
lished series using other techniques for percutaneous
screw placement.72

A common comparison is between conventional
open technique and MIS using IG or robotics.
There are improvements in perioperative variables
and short-term outcomes, but it is difficult to
determine whether these benefits are secondary to
the technology or the MIS approach. Compared to
open TLIF, Tian et al73 noted that minimally
invasive TLIF using IG did result in longer
operative times but less blood loss, fewer transfu-
sions, and less postoperative drainage than open
TLIF. They noted that their extended operative
time may have been related to a learning curve.
Similar to findings from other MIS papers, early
clinical markers, such as postoperative VAS back
pain and hospital length of stay, were better, but at
2 years clinical outcomes were no different than
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open surgery. In comparing IG instrumentation for
posterior fusion to freehand and fluoro-guided
techniques, Xiao et al74 noted a more than 50%
reduction in reoperation in the navigated group,
specifically with regard to hardware failure and
screw misplacement. Another study specifically
comparing freehand technique to RA for both
pedicle instrumentation and PLIF cage insertion
reported no difference in clinical outcomes or fusion
at 1 year, although the authors did note that the
cases performed with freehand PLIF were more
likely to have decreased disc height at the proximal
adjacent segment.75 Hyun et al76 compared a cohort
of 60 patients undergoing RA MIS or fluoro-guided
open surgery for 1- or 2-level posterior fusion. They
noted a decreased length of stay and reduced
radiation exposure in the RA group. Jiang et al77

matched a cohort of patients undergoing RA MIS
or freehand open 1- or 2-level lumbar fusion
surgery, noting less intraoperative blood loss and
shorter hospital stay in the RA group. Again, it is
unclear if the differences noted in these studies were
primarily due to the use of IG and RA or the
differences in short-term outcomes between MIS
and open techniques. Overall, further randomized,
controlled studies with the elimination of confound-
ing factors such as differences in surgical approach
would be highly benefitial.78

DISCUSSION

Accuracy becomes even more difficult to attain
when there is abnormal anatomy where the struc-
tures are more complex. Some examples include
revision fusion surgery and surgery on the upper
cervical spine. In the case of sacroiliac joint fusion,
accurately targeting the ventral and articular
portion of the joint may increase the chance of
getting a solid union. One of the advantages of RA/
IG systems is that they allow perioperative and
intraoperative adjustments, respectively. One can
optimize screw trajectories to avoid dangerous
territory, such as a high-riding vertebral artery
foramen in placement of C2 screws and when
instrumenting dysplastic pedicles. This same capac-
ity for fine-tuning and adjustment allows for
optimizing the width and length of pedicle screws.
This maximizes bony purchase while staying safe,
increasing pedicle fill, and getting bicortical pur-
chase in challenging areas such as the occiput and
sacrum. Anecdotally, the senior author’s size of
pelvic fixation screws has increased with the

assistance of such technologies. As our population
ages, this opportunity for more rigid and robust
fixation becomes more and more important.

Figure 1 depicts the intraoperative assessment for
optimizing an upper thoracic pedicle screw. Shown
here is the decision to downsize the screw length
from 45 to 40 mm. This technique allows for the safe
maximization of screw length while avoiding dan-
gerous breaches. Different screw insertion tech-
niques can be chosen based on visualization of the
costotransverse junction and the size of the pedicle,
allowing the surgeon to make a better decision on
the optimal choice of the trajectory for an outside-in
trajectory versus a transpedicular approach. The
width and length of the screw can then be adjusted
to increase purchase as discussed above. Screw entry
position can also be optimized both for purposes of
aligning screw heads for rod placement, or differ-
ential positioning to maximize the correction with
rod de-rotation techniques. In addition, one can see
the exact position of the anterior vascular anatomy
with respect to the intended instrumentation tract.

In posterior lumbar cases, the proximal facet is
easily visualized using IG as seen in Figure 2.
Avoidance of proximal facet violation is therefore
much more easily accomplished. In fact, an even
further lateral starting point would be obtainable
using navigation and would likely be more ideal.
Figure 3 shows the exact angle for preventing
cephalad/caudal facet violations in the posterior
cervical spine. In this case, the screw length was first
projected to be 16 mm. The saved trajectory, which
is outlined in pink, shows the adjustment to a 14-
mm screw to avoid a ventral cortical breach

Challenges in sacroiliac joint instrumentation
include dysplastic anatomy and bowel gas shadows
that hinder identification of the anatomy required
for safe instrumentation. This is especially true in
cases of older patients with osteoporotic bone in
whom strong fixation is essential. Figure 4 depicts
an example of the different views available with IG,
showing clear delineation of the anatomic struc-
tures. The top left image confirms that the trajectory
is ventral enough to access the articular area of the
joint. The top right shows the location of the iliac
cortical density above which runs the L5 root. This
enables the surgeon again to maximize the length of
the instrumentation and access the optimal bone
density within zone II while stopping short of the
iliac cortical density. At times, the amount of safe
bony real estate can make it difficult to accept
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multiple implants, especially in cases of smaller

patients. The bottom left picture allows the surgeon

to plan for more than 1 implant while staying within

the intra-articular portion of the joint. The coronal

cuts seen in the bottom right image can be used not

only for implant planning but also for visualization

of implant positioning with respect to the sacral

foramina.

These applications of the advanced IG systems

available today provide concrete examples of the

advantageous and obtainable improvements in

accuracy and safety as quoted in our literature
review.

Figure 1. Evaluation of the upper thoracic costotransverse joint for assessment of extrapedicular versus transpedicular approaches. Also shown is adjustment of the

pedicle screw length from 45 to 40 mm to avoid ventral breach.
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CONCLUSION

Image guidance and robotics are powerful tools

for assisting surgeons in performing safe and

effective spinal surgery. Although no technology

can replace the clinical knowledge, anatomic under-

standing, and technical skill of an experienced spinal

surgeon, these systems have the potential to improve

accuracy of instrumentation, reduce surgeon and

staff radiation exposure, and augment workflow

during surgery. Barriers to implementation are cost

and the learning curve of the system for the staff and

surgeon, but in the right scenario both are feasible.

Future developments, which include using MRI

data to map out nerves for lateral psoas-based

approaches and burr-based laminectomy aided by

Figure 2. Optimization of pedicle screw trajectory for better pedicle fill and length. This also allows visualization of the facet joint for the avoidance of proximal facet

violation and adjacent segment disease.

Figure 3Image-guided trajectory for lateral

mass fixation in the posterior cervical spine

with avoidance of the facet joints. Also shown

is adjustment of the screw length from 16 to 14

mm to avoid a ventral breach. An all in-bone

trajectory avoids injury to the exiting nerve root

and vertebral artery.
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robot-guided haptic feedback, will continue to
expand the utility and usefulness of these technol-
ogies. The creation of so called ‘‘no-fly’’ zones can
certainly assist with revision and or tumor decom-
pressions while maintaining safety. Large well-
constructed randomized trials will be required to
definitively establish independent improvements in
patient-specific variables, such as intraoperative
blood loss, complications, and postoperative clinical
outcomes.
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