Skip to main content
Log in

A universal spine tester for in vitro experiments with muscle force simulation

  • Original Articles
  • Published:
European Spine Journal Aims and scope Submit manuscript

Summary

We report a new apparatus to determine the quasistatic, three-dimensional, load-displacement characteristics of spines including muscle forces. The loading frame can be adapted to mono- and polysegmental specimens from the lumbar or cervical spine as well as to entire spines. Three force and three moment components can be applied in either direction individually or in combination with no constraint on the resulting motion; the loads can be applied at user-chosen rates of application and release with continuous recording of displacements, so as to study either creep or relaxation. The loads and displacement-measuring devices are computer-controlled. Thus, this testing device provides a tool for many kinds of stability tests and for basic research of spine biomechanics. A first experiment shows that the application of muscle forces significantly affects the load-deformation characteristics and intradiscal pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. 111. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14: 1249–1255

    PubMed  Google Scholar 

  2. Ashman RB, Galpin RD, Corin JD, Johnston CE (1989) Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model. Spine 14:1398–1405

    PubMed  Google Scholar 

  3. Brown T, Hansen RJ, Yorra AJ (1957) Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs. J Bone Joint Surg [Am] 39:1135–1164

    Google Scholar 

  4. Eggli S, Schläpfer F, Angst M, Witschger P, Aebi M (1992) Biomechanical testing of three newly developed transpedicular multisegmental fixation systems. Eur Spin J 1: 109–116

    Article  Google Scholar 

  5. El-Bohy AA, Yang K-H, King AI (1989) Experimental verification of facet load transmission by direct measurements of facet lamina contact pressure. J Biomech 22:931–941

    Article  PubMed  Google Scholar 

  6. Goel VK, Goyal S, Clark C, Nishiyama K (1985) Kinematics of the whole lumbar spine. Spine 10:543–554

    PubMed  Google Scholar 

  7. Goel VK, Nye TA, Clark CR, Nishiyma K, Weinstein JN (1987) A technique to evaluate an internal spine device by use of the Selspot system — an application to the Luque closed loop. Spine 12:150

    PubMed  Google Scholar 

  8. Markolf KL (1972) Deformation of the thoracolumbar intervertebral joints in response to external loads. J Bone Joint Surgery [Am] 54:511–533

    Google Scholar 

  9. Mickley K, Nolte LP (1989) Experimentelle Bestimmung biomechanischer Modellparameter ein- und mehrsegmenteller Lendenwirbelabschnitte. VDI Berichte 731:443–452

    Google Scholar 

  10. Mickley K, Nolte LP, Stumpf H, Lange H, Beerens C, Krämer J (1990) Eine Versuchsanlage für biomechanische Studien an menschlichen Wirbelsdulenprdparaten. Messtechnische Briefe 26:10–16

    Google Scholar 

  11. Nachemson A (1963) The influence of spinal movements on the lumbar intradiscal pressure and on the tensile stresses in the annulus fibrosus. Acta Orthop Scand 33:183–207

    PubMed  Google Scholar 

  12. Nachemson AL (1981) Disc pressure measurements. Spine 6: 93–97

    PubMed  Google Scholar 

  13. Panjabi MM, Brand RA, White AA (1976) Mechanical properties of the human thoracic spine. J Bone Joint Surg [Am] 58: 642–652

    Google Scholar 

  14. Panjabi MM (1977) Experimental determination of spinal motion segment behavior. Orthop Clin North Am 8:169–181

    PubMed  Google Scholar 

  15. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices. I. A conceptual framework. Spine 13:1129–1134

    PubMed  Google Scholar 

  16. Panjabi MM, Brand RM, White AA (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9:185–192

    Article  PubMed  Google Scholar 

  17. Panjabi MM, Krag MH, White AA, Southwick WO (1977) Effects of preload on load displacement curves of the lumbar spine. Orthop Clin North Am 8:181–193

    PubMed  Google Scholar 

  18. Panjabi MM, Abumi K, Druanceau J, Crisco JJ (1988) Biomechanical evaluation of spinal fixation devices. 11. Stability provided by eight internal fixation devices. Spine 13:1135–1140

    PubMed  Google Scholar 

  19. Panjabi MM, Abumi K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscle forces — a biomechanical model. Spine 14:194–200

    PubMed  Google Scholar 

  20. Panjabi MM, Yamamoto I, Oxland TR, Crisco JJ, Freedman D (1991) Biomechanical stability of five pedicle screw fixation systems in a human lumbar spine instability model. Clin Biomech 6:197–205

    Article  Google Scholar 

  21. Sutterlin CE, McAffee PC, Warden KE, Rey RM, Farey ID (1988) A biomechanical evaluation of cervical spinal stabilization method in a bovine model — static and cyclical loading. Spine 13:795–802

    PubMed  Google Scholar 

  22. Ulrich C, Woersdoerfer O, Klaff R, Claes L, Wilke H-J (1991) Biomechanics of fixation systems to the cervical spine. Spine 16:4–9

    Google Scholar 

  23. Wen N, Dantin JJ, Lavaste F (1992) Static biomechanical properties of normal and degenerated human cervical spine in vitro. VIII Meeting of the European Society of Biomechanics, Rome, June 21–24, 198

  24. White AA, Panjabi MM (1980) Clinical biomechanics of the spine, 2nd edn. Lippincott, Philadelphia

    Google Scholar 

  25. Wilke H-J, Fischer K, Kugler A, Magerl F, Claes L, Wörsdörfer O (1992) In vitro intestigations of internal fixation systems of the upper cervical spine. I. Stability of the direct anterior screw fixation of'the odontoid. Eur Spine J 1: 185–190

    Article  Google Scholar 

  26. Wilke H-J, Fischer K, Kugler A, Magerl F, Claes L, Wörsdörfer O (1992) In vitro intestigations of internal fixation systems of the upper cervical spine. II. Stability of posterior atlanto-axial fixation techniques. Fur Spine J 1: 191–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, H.J., Claes, L., Schmitt, H. et al. A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3, 91–97 (1994). https://doi.org/10.1007/BF02221446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02221446

Key words

Navigation