Skip to main content
Log in

Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review

  • original article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Interbody cages in the lumbar spine have met with mixed success in clinical studies. This has led many investigators to supplement cages with posterior instrumentation. The objective of this literature review is to address the mechanics of interbody cage fixation in the lumbar spine with respect to three-dimensional stabilization and the strength of the cage-vertebra interface. The effect of supplementary posterior fixation is reviewed. Only three-dimensional stabilization evaluations in human cadaveric models are included. These studies involve the application of different loads to the spine and the measurement of vertebral motion in flexion-extension, axial rotation, and lateral bending. There are no published studies which detected any differences between different cage designs. However, it does seem that cages inserted from an anterior direction provide better stabilization to the spine than those inserted from a posterior direction. In general, anterior cages stabilize better than posterior cages in axial rotation and lateral bending. Cages from both directions stabilized well in flexion, but not in extension. Supplementary posterior fixation with pedicle or translaminar screws substantially improves the stabilization in all directions. The strength of the cage-vertebra interface from studies using human cadaveric specimens is also reviewed. The axial compressive strength of this interface is highly dependent upon vertebral body bone density. Other factors such as preservation of the subchondral bony end-plate and cage design are clearly less important in the compressive strength. Supplementary posterior instrumentation does not enhance substantially the interface strength in axial compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 1 September 1999/Accepted: 6 September 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oxland, T., Lund, T. Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. E Spine J 9 (Suppl 1), S095–S101 (2000). https://doi.org/10.1007/PL00010028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010028

Navigation