Skip to main content

Advertisement

Log in

Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it?

  • Review Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Background

Electrical stimulation (EStim) has been proven to promote bone healing in experimental settings and has been used clinically for many years and yet it has not become a mainstream clinical treatment.

Methods

To better understand this discrepancy we reviewed 72 animal and 69 clinical studies published between 1978 and 2017, and separately asked 161 orthopedic surgeons worldwide about their awareness, experience, and acceptance of EStim for treating fracture patients.

Results

Of the 72 animal studies, 77% reported positive outcomes, and the most common model, bone, fracture type, and method of administering EStim were dog, tibia, large bone defects, and DC, respectively. Of the 69 clinical studies, 73% reported positive outcomes, and the most common bone treated, fracture type, and method of administration were tibia, delayed/non-unions, and PEMF, respectively. Of the 161 survey respondents, most (73%) were aware of the positive outcomes reported in the literature, yet only 32% used EStim in their patients. The most common fracture they treated was delayed/non-unions, and the greatest problems with EStim were high costs and inconsistent results.

Conclusion

Despite their awareness of EStim’s pro-fracture healing effects few orthopedic surgeons use it in their patients. Our review of the literature and survey indicate that this is due to confusion in the literature due to the great variation in methods reported, and the inconsistent results associated with this treatment approach. In spite of this surgeons seem to be open to using this treatment if advancements in the technology were able to provide an easy to use, cost-effective method to deliver EStim in their fracture patients. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garrat AC. Electrophysiology and electrotherapeutics. Boston: Ticknor and Fields; 1860.

    Google Scholar 

  2. Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009;43(2):127–31. https://doi.org/10.4103/0019-5413.50846.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chalidis B, Sachinis N, Assiotis A, Maccauro G, Graziani F. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol. 2011;24:17–20.

    Article  CAS  PubMed  Google Scholar 

  4. Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields [review]. Clin Orthop. 2004;419:30–7.

    Article  Google Scholar 

  5. Simonis RB, Parnell EJ, Ray PS, Peacock JL. Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003;34:357–62.

    Article  CAS  PubMed  Google Scholar 

  6. Andersen T, Christensen FB, Ernst C, Fruensgaard S, Østergaard J, Andersen JL, et al. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 1: functional outcome. Spine. 2009;34:2241–7.

    Article  PubMed  Google Scholar 

  7. Steinberg ME, Brighton CT, Hayken GD, Tooze SE, Steinberg DR. Early results in the treatment of avascular necrosis of the femoral head with electrical stimulation. Orthop Clin N Am. 1984;15:163–75.

    CAS  Google Scholar 

  8. Sharrard WJ, Sutcliffe ML, Robson MJ, Maceachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Jt Surg Br. 1982;64:189–93.

    Article  CAS  Google Scholar 

  9. Brighton C, Shaman P, Heppenstall R. Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop. 1995;321:223–34.

    Google Scholar 

  10. Borsalino G, Bagnacani M, Bettati E, et al. Electrical stimulation of human femoral intertrochanteric osteotomies. Clin Orthop. 1988;237:256–63.

    Google Scholar 

  11. Bassett CA, Mitchell SN, Schink MM. Treatment of therapeutically resistant non-unions with bone grafts and pulsing electromagnetic fields. J Bone Jt Surg Am. 1982;64:1214–20.

    Article  CAS  Google Scholar 

  12. Steinberg ME, Brighton CT, Corces A, Hayken GD, Steinberg DR, Strafford B, et al. Osteonecrosis of the femoral head. Results of core decompression and grafting with and without electrical stimulation. Clin Orthop Relat Res. 1989;249:199–208.

    Google Scholar 

  13. Tai G, Tai M, Zhao M. Electrically stimulated cell migration and its contribution to wound healing. Burns Trauma. 2018;6:20. https://doi.org/10.1186/s41038-018-0123-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yuan X, Arkonac DE, Chao PG, Vunjak-Novakovic G. Electrical stimulation enhances cell migration and integrative repair in the meniscus. Sci Rep. 2014;4:3674. https://doi.org/10.1038/srep03674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ercan B, Webster TJ. Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation. Int J Nanomed. 2008;3(4):477–85.

    CAS  Google Scholar 

  16. Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One. 2012;7(1):e30348. https://doi.org/10.1371/journal.pone.0030348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, et al. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res. 2009;315(20):3611–9. https://doi.org/10.1016/j.yexcr.2009.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamada A, Gaja N, Ohya S, Muraki K, Narita H, Ohwada T, et al. Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells. Jpn J Pharmacol. 2001;86(3):342–50.

    Article  CAS  PubMed  Google Scholar 

  19. Eischen-Loges M, Oliveira KMC, Bhavsar MB, Barker JH, Leppik L. Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects. PeerJ. 2018;6:e4959. https://doi.org/10.7717/peerj.4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mobini S, Leppik L, Parameswaran VT, Barker JH. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ. 2017;12(5):e2821. https://doi.org/10.7717/peerj.2821.

    Article  CAS  Google Scholar 

  21. Behari J. Effect of electrical stimulation in mineralization and collagen enrichment of osteoporotic rat bones. In: 2008 International conference on recent advances in microwave theory and applications 2008.

  22. Durigan JLQ, Peviani SM, Delfino GB, De Souza Jose RJ, Parra T, Salvini TF. Neuromuscular electrical stimulation induces beneficial adaptations in the extracellular matrix of quadriceps muscle after anterior cruciate ligament transection of rats. Am J Phys Med Rehabil. 2014;93(11):948–61. https://doi.org/10.1097/PHM.0000000000000110.

    Article  PubMed  Google Scholar 

  23. George PM, Bliss TM, Hua T, Lee A, Oh B, Levinson A, et al. Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials. 2017;142:31–40. https://doi.org/10.1016/j.biomaterials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, et al. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep. 2015;17(5):18353. https://doi.org/10.1038/srep18353.

    Article  CAS  Google Scholar 

  25. Leppik L, Zhihua H, Mobini S, Parameswaran VT, Eischen-Loges M, Slavici A, et al. Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep. 2018;8(1):6307. https://doi.org/10.1038/s41598-018-24892-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brochet F, Weber J. LinkedIn Corporation. Harvard Business School Case 112–006; 2012.

  27. Tejano N, Puno R, Ignacio JM. The use of implantable direct current stimulation in multilevel spinal fusion without instrumentation. Spine. 1996;21(16):1904–8. https://doi.org/10.1097/00007632-199608150-00015.

    Article  CAS  PubMed  Google Scholar 

  28. Sharrard WJW. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Jt Surg Br. 1990;72:347–55.

    Article  CAS  Google Scholar 

  29. Brighton CT. Treatment of non-union of the tibia with constant direct current. J Trauma. 1981;21:189–95.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta AK, Srivastava KP, Avasthi S. Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures. Indian J Orthop. 2009;43(2):156–60. https://doi.org/10.4103/0019-5413.50850.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Spadaro JA. Electrically stimulated bone growth in animals and man. Review of the literature. Clin Orthop Relat Res. 1977;122:325–32.

    Google Scholar 

  32. Barker AT, Dixon RA, Sharrard WJW, Sutcliffe ML. Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet. 1984;1:994–6.

    Article  CAS  PubMed  Google Scholar 

  33. Brighton C, Pollack S. Treatment of recalcitrant non-unions with a capacitively coupled electrical field. J Bone Joint Surg. 1985;67A:577–85.

    Article  Google Scholar 

  34. Kooistra BW, Jain A, Hanson BP. Electrical stimulation: nonunions. Indian J Orthop. 2009;43(2):149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  35. EXOGEN. EXOGEN® Bone healing system shown to be most cost-effective bone stimulator. 2005.

  36. Schultz M, Oremus M, Whitman C, Conway J. Cost-effectiveness of bone stimulators in the conservative treatment of stable nonunion fractures. Value Health. 2004;7:723 (International Society for Pharmacoeconomics and Outcomes Research (ISPOR)).

    Article  Google Scholar 

  37. Cebrián JL, Gallego P, Francés A, Sánchez P, Manrique E, Marco F, et al. Comparative study of the use of electromagnetic fields in patients with pseudoarthrosis of tibia treated by intramedullary nailing. Int Orthop. 2010;34(3):437–40. https://doi.org/10.1007/s00264-009-0806-1.

    Article  PubMed  Google Scholar 

  38. Abdelrahim A, Hassanein HR, Dahaba M. Effect of pulsed electromagnetic field on healing of mandibular fracture: a preliminary clinical study. J Oral Maxillofac Surg. 2011;69(6):1708–17. https://doi.org/10.1016/j.joms.2010.10.013.

    Article  PubMed  Google Scholar 

  39. Colson DJ, Browett JP, Fiddian NJ, Watson B. Treatment of delayed- and non-union of fractures using pulsed electromagnetic fields. J Biomed Eng. 1988;10:301–4.

    Article  CAS  PubMed  Google Scholar 

  40. Meril AJ. Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions. Spine. 1994;19:2393–8.

    Article  CAS  PubMed  Google Scholar 

  41. Simmons JW, Hayes MA, Christensen DK, Dwyer AP, Koullsis CS, Kimmich SJ. The effect of postoperative pulsing electromagnetic fields on lumbar fusion: an open trial phase study. Quebec, Canada: Presented at the North American Spine Society; 1989.

    Google Scholar 

  42. Lee K. Clinical investigation of the spinal stem system open trial phase: pseudarthrosis stratum. Las Vegas, Nevada: Presented at the annual meeting of the American Academy of Orthopaedic Surgeons; 1989.

    Google Scholar 

  43. Ebrahim S, Mollon B, Bance S, Busse JW, Bhandari M. Low-intensity pulsed ultrasonography versus electrical stimulation for fracture healing: a systematic review and network meta-analysis. Can J Surg. 2014;57(3):E105–18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kertzman P, Császár NBM, Furia JP, Schmitz C. Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: a retrospective case series. J Orthop Surg Res. 2017;12(1):164. https://doi.org/10.1186/s13018-017-0667-z.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Putnam JG, Mitchell SM, DiGiovanni RM, Stockwell EL, Edwards SG. Outcomes of unstable scaphoid nonunion with segmental defect treated with plate fixation and autogenous cancellous graft. J Hand Surg Am. 2019;44(2):160.e1–7. https://doi.org/10.1016/j.jhsa.2018.05.023.

    Article  Google Scholar 

  46. Aydin N, Bezer M. The effect of an intramedullary implant with a static magnetic field on the healing of the osteotomised rabbit femur. Int Orthop. 2011;35(1):135–41. https://doi.org/10.1007/s00264-009-0932-9.

    Article  PubMed  Google Scholar 

  47. Barak S, Neuman M, Iezzi G, Piattelli A, Perrotti V, Gabet Y. A new device for improving dental implants anchorage: a histological and micro-computed tomography study in the rabbit. Clin Oral Implant Res. 2016;27(8):935–42. https://doi.org/10.1111/clr.12661.

    Article  Google Scholar 

  48. Buzza EP, Shibli JA, Barbeiro RH, Barbosa JR. Effects of electromagnetic field on bone healing around commercially pure titanium surface: histologic and mechanical study in rabbits. Implant Dent. 2003;12:182–7.

    Article  PubMed  Google Scholar 

  49. Fredericks DC, Piehl DJ, Baker JT, Abbott J, Nepola JV. Effects of pulsed electromagnetic field stimulation on distraction osteogenesis in the rabbit tibial leg lengthening model. J Pediatr Orthop. 2003;23:478–83.

    PubMed  Google Scholar 

  50. France JC, Norman TL, Santrock RD, McGrath B, Simon BJ. The efficacy of direct current stimulation for lumbar intertransverse process fusions in an animal model. Spine. 2001;26:1002–8.

    Article  CAS  PubMed  Google Scholar 

  51. Gilotra M, Griffith C, Schiavone J, Nimmagadda N, Noveau J, Ludwig SC. Capacitive coupling reduces instrumentation-related infection in rabbit spines: a pilot study. Clin Orthop Relat Res. 2012;470(6):1646–51. https://doi.org/10.1007/s11999-011-2231-1.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hu J, Qu J, Xu D, Zhang T, Qin L, Lu H. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. J Orthop Res. 2014;32(2):204–9. https://doi.org/10.1002/jor.22505.

    Article  PubMed  Google Scholar 

  53. Kim J, Yang HJ, Cho TH, Lee SE, Park YD, Kim HM, et al. Enhanced regeneration of rabbit mandibular defects through a combined treatment of electrical stimulation and rhBMP-2 application. Med Biol Eng Comput. 2013;51(12):1339–48. https://doi.org/10.1007/s11517-013-1106-x.

    Article  PubMed  Google Scholar 

  54. Matsumoto H, Ochi M, Abiko Y, Hirose Y, Kaku T, Sakaguchi K. Pulsed electromagnetic fields promote bone formation around dental implants inserted into the femur of rabbits. Clin Oral Implant Res. 2000;11(4):354–60.

    Article  CAS  Google Scholar 

  55. Ottani V, Raspanti M, Martini D, Tretola G, Ruggeri A, Franchi M, et al. Electromagnetic stimulation on the bone growth using backscattered electron imaging. Micron. 2002;33:121–5.

    Article  CAS  PubMed  Google Scholar 

  56. Rubinacci A, Black J, Brighton CT, Friedenberg ZB. Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. J Orthop Res. 1988;6:335–45.

    Article  CAS  PubMed  Google Scholar 

  57. Shafer DM, Rogerson K, Norton L, Bennett J. The effect of electrical perturbation on osseointegration of titanium dental implants. J Oral Maxillofac Surg. 1995;53:1063–8.

    Article  CAS  PubMed  Google Scholar 

  58. Shimizu E, Matsuda-Honjyo Y, Samoto H, Saito R, Nakajima Y, Nakayama Y, et al. Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary-specific transcription factor-1 motif. J Cell Biochem. 2004;91:1183–96.

    Article  CAS  PubMed  Google Scholar 

  59. Smith R. Nagel D Effects of pulsing electromagnetic fields on bone growth and articular cartilage. Clin Orthop. 1983;181:277–82.

    CAS  Google Scholar 

  60. Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20:142–50.

    Article  PubMed  Google Scholar 

  61. Veronesi F, Cadossi M, Giavaresi G, Martini L, Setti S, Buda R, et al. Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord. 2015;2(16):233. https://doi.org/10.1186/s12891-015-0683-2.

    Article  CAS  Google Scholar 

  62. Yonemori K, Matsunaga S, Ishidou Y, Maeda S, Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone. 1996;19:173–80.

    Article  CAS  PubMed  Google Scholar 

  63. Zimmerman M, Parsons JR, Alexander H, Weiss AB. The electrical stimulation of bone using a filamentous carbon cathode. J Biomed Mater Res. 1984;18:927–38.

    Article  CAS  PubMed  Google Scholar 

  64. Berry JL, Geiger JM, Moran JM, Skraba JS, Greenwald AS. Use of tricalcium phosphate or electrical-stimulation to enhance the bone porous implant interface. J Biomed Mater Res. 1986;20:65–77.

    Article  CAS  PubMed  Google Scholar 

  65. Bins-Ely LM, Cordero EB, Souza JCM, Teughels W, Benfatti CAM, Magini RS. In vivo electrical application on titanium implants stimulating bone formation. J Periodontal Res. 2017;52(3):479–84. https://doi.org/10.1111/jre.12413.

    Article  CAS  PubMed  Google Scholar 

  66. Branham GB, Triplett RG, Yeandle S, Vieras F. The effect of electrical current on the healing of mandibular freeze-dried bone allografts in dogs. J Oral Maxillofac Surg. 1985;43(6):403–7.

    Article  CAS  PubMed  Google Scholar 

  67. Chakkalakal DA, Lippiello L, Shindell RL, Connolly JF. Electrophysiology of direct current stimulation of fracture healing in canine radius. IEEE Trans Biomed Eng. 1990;37:1048–58.

    Article  CAS  PubMed  Google Scholar 

  68. Colella SM, Miller AG, Stang RG, Stoebe TG, Spengler DM. Fixation of porous titanium implants in cortical bone enhanced by electrical stimulation. J Biomed Mater Res. 1981;15:37–46.

    Article  CAS  PubMed  Google Scholar 

  69. Connolly JF, Henry H, Jardon J. The Electrical Enhancement of Periosteal Proliferation in Normal and Delayed Fracture Healing. Clin Orthop. 1977;124:97–105.

    Google Scholar 

  70. Dejardin LM, Kahanovitz N, Arnoczky SP, Simon BJ. The effect of varied electrical current densities on lumbar spinal fusions in dogs. Spine J. 2001;1:341–7.

    Article  CAS  PubMed  Google Scholar 

  71. Doyle ND. Rehabilitation of fractures in small animals: maximize outcomes, minimize complications. Clin Tech Small Anim Pract. 2004;19:180–91.

    Article  PubMed  Google Scholar 

  72. Rodriguez Fuentes AE, Marcondes de Souza JP, Valeri V, Mascarenhas S. Experimental model of electric stimulation of pseudarthrosis healing. Clin Orthop. 1984;183:267–75.

    Google Scholar 

  73. Inoue N, Ohnishi I, Chen D, Deitz LW, Schwardt JD, Chao EYS. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J Orthop Res. 2002;20:1106–14.

    Article  PubMed  Google Scholar 

  74. Jacobs JD, Norton LA. Electrical stimulation of osteogenesis in periodontal defects. Clin Orthop. 1977;124:41–52.

    Google Scholar 

  75. Jacobs RR, Luethi U, Dueland RT, Perren SM. Electrical stimulation of experimental nonunions. Clin Orthop Relat Res. 1981;161:146–53.

    Google Scholar 

  76. Kahanovitz N, Arnoczky S, Nemzek J, Shores A. The effect of EMF pulsing on posterior lumbar spinal fusion in dogs. Spine. 1994;19:705–9.

    Article  CAS  PubMed  Google Scholar 

  77. Lindsey RW, Grobman J, Leggon RE, Panjabi M, Friedlaender GE. Effects of bone graft and electrical stimulation on the strength of healing bony defects in dogs. Clin Orthop. 1987;222:275–80.

    Google Scholar 

  78. Modarresi J, Aghili H, Karandish M, Jalali B, Zahir ST. Effect of direct electric current on parietal bone osteogenesis. J Craniofac Surg. 2012;23(6):1607–9. https://doi.org/10.1097/SCS.0b013e3182575423.

    Article  PubMed  Google Scholar 

  79. Ortman LF, Casey DM, Deers M. Bioelectric stimulation and residual ridge resorption. J Prosthet Dent. 1992;67:67–71.

    Article  CAS  PubMed  Google Scholar 

  80. Dev MED, Org ART, Ingrowth T, Recum V, Al PET. ABSTRACT The effect of electrical stimulation on the interfacial strength of the porous polymethylmethacrylate implant/oral tissue union and the amount. Department of Interdisciplinary Studies, College of Engineering Clemson University Clemson, 1978;6:291–303.

  81. Cundy PJ, Paterson DC. A ten year review of treatment of delayed union and nonunion with an implanted bone growth stimulator. Clin Orthop Relat Res. 1988;259:216–22.

    Google Scholar 

  82. Paterson DC, Hillier TM, Carter RF, Ludbrook J, Maxwell GM, Savage JP. Experimental delayed union of the dog tibia and its use in assessing the effect of an electrical bone growth stimulator. Clin Orthop. 1977;128:340–50.

    Google Scholar 

  83. Paterson DC, Carter RF, Tilbury RF, Ludbrook J. Savage JP The effects of varying current levels of electrical stimulation. Clin Ortho Relat Res. 1982;169:303–12.

    Google Scholar 

  84. Pepper JR, Herbert MA, Anderson JR, Bobechko WP. Effect of capacitive coupled electrical stimulation on regenerate bone. J Orthop Res. 1996;14:296–302.

    Article  CAS  PubMed  Google Scholar 

  85. Schutzer SF, Jasty M, Bragdon CR, Harrigan TP, Harris WH. A double-blind study on the effects of a capacitively coupled electrical field on bone ingrowth into porous-surfaced canine total hip prosthesis. Clin Orthop Rel Res. 1990;260:297–304.

    Article  Google Scholar 

  86. Shayesteh YS, Eslami B, Dehghan MM, Vaziri H, Alikhassi M, Mangoli A, et al. The effect of a constant electrical field on osseointegration after immediate implantation in dog mandibles: a preliminary study: basic science research. J Prosthodont. 2007;16:337–42.

    Article  PubMed  Google Scholar 

  87. Shokry M. Preliminary study on the use of a silver oxide watch battery (1.5 V) for electrical enhancement of bone healing. Vet Res Commun. 1985;9:245–50.

    Article  CAS  PubMed  Google Scholar 

  88. Srivastava KP, Lahiri V, Khare A. Chandra H Histomorphologic evidence of fracture healing after direct electrical stimulation in dogs. J Trauma. 1982;22(9):785–6.

    Article  CAS  PubMed  Google Scholar 

  89. Atalay Y, Gunes N, Guner MD, Akpolat V, Celik MS, Guner R. Pentoxifylline and electromagnetic field improved bone fracture healing in rats. Drug Des Dev Ther. 2015;9(9):5195–201. https://doi.org/10.2147/DDDT.S89669.

    Article  CAS  Google Scholar 

  90. Brighton CT, Tadduni GT, Goll SR, Pollack SR. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption. J Orthop Res. 1988;6:676–84.

    Article  CAS  PubMed  Google Scholar 

  91. Giannunzio GA, Speerli RC, Guglielmotti MB. Electrical field effect on peri-implant osteogenesis: a histologic and histomorphometric study. Implant Dent. 2008;17:118–26.

    Article  PubMed  Google Scholar 

  92. Guizzardi S, Silvestre M, Govoni P, Scandroglio R. Pulsed electromagnetic field stimulation on posterior spinal fusions: a histological study in rats. J Spinal Disord. 1994;7:36–40.

    Article  CAS  PubMed  Google Scholar 

  93. Van Der Jagt OP, Van Der Linden JC, Waarsing JH, Verhaar JAN, Weinans H. Systemic treatment with pulsed electromagnetic fields do not affect bone microarchitecture in osteoporotic rats. Int Orthop. 2012;36(7):1501–6. https://doi.org/10.1007/s00264-011-1471-8.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lirani-Galvão APR, Bergamaschi CT, Silva OL, Lazaretti-Castro M. Electrical field stimulation improves bone mineral density in ovariectomized rats. Braz J Med Biol Res. 2006;39:1501–5.

    Article  PubMed  Google Scholar 

  95. Manjhi J, Mathur R, Behari J. Effect of low level capacitive-coupled pulsed electric field stimulation on mineral profile of weight-bearing bones in ovariectomized rats. J Biomed Mater Res B Appl Biomater. 2010;92(1):189–95. https://doi.org/10.1002/jbm.b.31505.

    Article  CAS  PubMed  Google Scholar 

  96. Marino AA, Cullen JM, Reichmanis M, Becker RO. Fracture healing in rats exposed to extremely low frequency electric fields. Clin Orthop 1979;145:239–44.

    Google Scholar 

  97. Medalha CC, Amorim BO, Ferreira JM, Oliveira P, Pereira RMR, Tim C, et al. Comparison of the effects of electrical field stimulation and low-level laser therapy on bone loss in spinal cord-injured rats. Photomed Laser Surg. 2010;28(5):669–74. https://doi.org/10.1089/pho.2009.2691.

    Article  PubMed  Google Scholar 

  98. Nakajima M, Inoue M, Hojo T, Inoue N, Tanaka K, Takatori R, et al. Effect of electroacupuncture on the healing process of tibia fracture in a rat model: a randomised controlled trial. Acupunct Med. 2010;28:140–3.

    Article  PubMed  Google Scholar 

  99. Puricelli E, Dutra NB, Ponzoni D. Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats. Head Face Med. 2009;5:1. https://doi.org/10.1186/1746-160X-5-1.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Shen WW, Zhao JH. Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis. Bioelectromagnetics. 2010;31(2):113–9. https://doi.org/10.1002/bem.20535.

    Article  CAS  PubMed  Google Scholar 

  101. Spadaro JA, Becker RO. Function of implanted cathodes in electrode-induced bone growth. Med Biol Eng Comput. 1979;17:769–75.

    Article  CAS  PubMed  Google Scholar 

  102. Takano-Yamamoto T, Kawakami M, Sakuda M. Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats. J Dent Res. 1992;71:1920–5.

    Article  CAS  PubMed  Google Scholar 

  103. Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Kasuyama K, et al. Effects of electrical stimulation on periodontal tissue remodeling in rats. J Periodontal Res. 2013;48(2):177–83. https://doi.org/10.1111/j.1600-0765.2012.01518.x.

    Article  CAS  PubMed  Google Scholar 

  104. Uysal T, Amasyali M, Olmez H, Karslioglu Y, Gunhan O. Stimulation of bone formation by direct electrical current in an orthopedically expanded suture in the rat. Korean J Orthod. 2010;40:106–14.

    Article  Google Scholar 

  105. Yang BY, Huang TC, Chen YS, Yao CH. Reconstructive effects of percutaneous electrical stimulation combined with GGT composite on large bone defect in rats. Evid Based Complement Altern Med. 2013. https://doi.org/10.1155/2013/607201.

    Article  Google Scholar 

  106. Yu K, Yoon YS, Jeon J. The effect of electrical stimulation combined with foam dressing on ulcer healing in rats with spinal cord injury. Adv Skin Wound Care. 2015;28(11):495–502. https://doi.org/10.1097/01.ASW.0000470553.85257.84.

    Article  PubMed  Google Scholar 

  107. Zamarioli A, Battaglino RA, Morse LR, Sudhakar S, Maranho DAC, Okubo R, et al. Standing frame and electrical stimulation therapies partially preserve bone strength in a rodent model of acute spinal cord injury. Am J Phys Med Rehabil. 2013;92(5):402–10. https://doi.org/10.1097/PHM.0b013e318287697c.

    Article  PubMed  Google Scholar 

  108. Benazzo F, Cadossi M, Cavani F, Fini M, Giavaresi G, Setti S, et al. Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res. 2008;26(5):631–42. https://doi.org/10.1002/jor.20530.

    Article  PubMed  Google Scholar 

  109. Dergin G, Aktas M, Gürsoy B, Kürkçü M, Devecioğlu Y, Benlidayı E. Direct current electric stimulation in implant osseointegration: an experimental animal study with sheep. J Oral Implantol. 2013;39(6):671–9. https://doi.org/10.1563/AAID-JOI-D-10-00172.

    Article  PubMed  Google Scholar 

  110. Flouty OE, Oya H, Kawasaki H, Reddy CG, Fredericks DC, Gibson-Corley KN, et al. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS One. 2013;8(2):e56266. https://doi.org/10.1371/journal.pone.0056266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. El-Hakim IE, Azim AM, El-Hassan MF, Maree SM. Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. Int J Oral Maxillofac Surg. 2004;33(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  112. Law HT, Annan I, McCarthy ID, Hughes SP, Stead AC, Camburn MA, et al. The effect of induced electric currents on bone after experimental osteotomy in sheep. J Bone Jt Surg Br. 1985;67:463–9.

    Article  CAS  Google Scholar 

  113. Muttini A, Abate M, Bernabò N, Cavani F, Mingozzi R, Tosi U, et al. Effect of electric current stimulation in combination with external fixator on bone healing in a sheep fracture model. Vet Ital. 2014;50(4):249–57. https://doi.org/10.12834/VetIt.271.963.

    Article  PubMed  Google Scholar 

  114. Toth JM, Seim HB, Schwardt JD, Humphrey WB, Wallskog JA, Turner AS. Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine. 2000;25:2580–7.

    Article  CAS  PubMed  Google Scholar 

  115. Canè V, Botti P, Farneti D, Soana S. Electromagnetic stimulation of bone repair: a histomorphometric study. J Orthop Res. 1991;9:908–17.

    Article  PubMed  Google Scholar 

  116. Kold SE, Hickman J. Preliminary study of quantitative aspects and the effect of pulsed electromagnetic field treatment on the incorporation of equine cancellous bone graft. Equine Vet J. 1987;19(2):120–4.

    Article  CAS  PubMed  Google Scholar 

  117. Sanders-Shamis M, Bramlage LR, Weisbrode SE, Gabel AA. A preliminary investigation of the effect of selected electromagnetic field devices on healing of cannon bone osteotomies in horses. Equine Vet J. 1989;21:201–5.

    Article  CAS  PubMed  Google Scholar 

  118. Abeed RI, Naseer M, Abel EW. Capacitively coupled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma. 1998;12:510–3.

    Article  CAS  PubMed  Google Scholar 

  119. Adie S, Harris I, Naylor J. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial. J Bone Jt Surg Am. 2011;93(17):1569–76. https://doi.org/10.2106/JBJS.J.00869.

    Article  Google Scholar 

  120. Andersen T, Christensen FB, Egund N, Ernst C, Fruensgaard S, Ostergaard J, et al. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 2: fusion rates. Spine. 2009;34:2248–53.

    Article  PubMed  Google Scholar 

  121. Andersen T, Christensen FB, Langdahl BL, Ernst C, Fruensgaard S, Østergaard J, et al. Fusion mass bone quality after uninstrumented spinal fusion in older patients. Eur Spine J. 2010;19(12):2200–8. https://doi.org/10.1007/s00586-010-1373-2.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Assiotis A, Sachinis NP, Chalidis BE. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions A prospective clinical study and review of the literature. J Orthop Surg Res. 2012;7:24. https://doi.org/10.1186/1749-799x-7-24.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bassett CA, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Jt Surg Am. 1981;63:511–23.

    Article  CAS  Google Scholar 

  124. Beck BR, Matheson GO, Bergman G, Norling T, Fredericson M, Hoffman AR, et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36(3):545–53.

    Article  PubMed  Google Scholar 

  125. Benazzo F, Mosconi M, Beccarisi G, Galli U. Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res. 1995;310:145–9.

    Google Scholar 

  126. Boyette MY, Herrera-Soto JA. Treatment of delayed and nonunited fractures and osteotomies with pulsed electromagnetic field in children and adolescents. Orthopedics. 2012;35(7):e1051–5. https://doi.org/10.3928/01477447-20120621-20.

    Article  PubMed  Google Scholar 

  127. Bronner S, Novella T, Becica L. Management of a delayed-union sesamoid fracture in a dancer. J Orthop Sports Phys Ther. 2007;37:529–40.

    Article  PubMed  Google Scholar 

  128. Capanna R, Donati D, Masetti C, Manfrini M, Panozzo A, Cadossi R, et al. Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection. A double blind study. Clin Orthop Rel Res. 1994;306:213–21.

    Google Scholar 

  129. de Haas WG, Watson J, Morrison DM. Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J Bone Jt Surg Br. 1980;62:465–70.

    Article  Google Scholar 

  130. Donley BG, Ward DM. Implantable electrical stimulation in high-risk hindfoot fusions. Foot Ankle Int. 2002;23:13–8.

    Article  PubMed  Google Scholar 

  131. Dunn A, Rush G. Electrical stimulation in treatment of delayed union and nonunion of fractures and osteotomies. South Med J. 1984;77:1530–4.

    Article  CAS  PubMed  Google Scholar 

  132. Foley K, Mroz T, Arnold P. Randomized, prospective, and controlled clinical trial of pulsed electromagnetic field stimulation for cervical fusion. Spine J. 2008;8:436–42.

    Article  PubMed  Google Scholar 

  133. Fourie JA, Bowerbank P. Stimulation of bone healing in new fractures of the tibial shaft using interferential currents. Physiother Res Int. 1997;2:255–68.

    Article  CAS  PubMed  Google Scholar 

  134. Freedman LS. Pulsating electromagnetic fields in the treatment of delayed and non-union of fractures: results from a district general hospital. Injury. 1985;16:315–7.

    Article  CAS  PubMed  Google Scholar 

  135. Garland D, Holt P, Harrington JT, Caldwell J, Zizic T, Cholewczynski J. A 3-month, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a highly optimized, capacitively coupled, pulsed electrical stimulator in patients with osteoarthritis of the knee. Osteoarthr Cartil. 2007;15(6):630–7.

    Article  CAS  Google Scholar 

  136. Goodwin C, Brighton C, Guyer R, Johnson J, Light K, Yuan H. A double blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusion. Spine. 1999;24:1349–57.

    Article  CAS  PubMed  Google Scholar 

  137. Hanft JR, Goggin JP, Landsman A, Surprenant M. The role of combined magnetic field bone growth stimulation as an adjunct in the treatment of neuroarthropathy/Charcot joint: an expanded pilot study. J Foot Ankle Surg. 1998;37:510–5.

    Article  CAS  PubMed  Google Scholar 

  138. Hannemann P, Göttgens KW, van Wely BJ, Kolkman KA, Werre AJ, Poeze M, et al. Pulsed electromagnetic fields in the treatment of fresh scaphoid fractures. A multicenter, prospective, double blind, placebo controlled, randomized trial. BMC Musculoskelet Disord. 2011;12:90. https://doi.org/10.1186/1471-2474-12-90.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hannemann PFW, Göttgens KWA, van Wely BJ, Kolkman KA, Werre AJ, Poeze M, et al. The clinical and radiological outcome of pulsed electromagnetic field treatment for acute scaphoid fractures: a randomised double-blind placebo-controlled multicentre trial. J Bone Jt Surg Br. 2012;94(10):1403–8.

    Article  CAS  Google Scholar 

  140. Holmes GB. Treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields. Foot Ankle Int. 1994;15:552–6.

    Article  PubMed  Google Scholar 

  141. Ito H, Shirai Y. The efficacy of ununited tibial fracture treatment using pulsing electromagnetic fields: relation to biological activity on nonunion bone ends. J Nippon Med Sch. 2001;68(2):149–53.

    Article  CAS  PubMed  Google Scholar 

  142. Itoh S, Ohta T, Sekino Y, Yukawa Y, Shinomiya K. Treatment of distal radius fractures with a wrist-bridging external fixation: the value of alternating electric current stimulation. J Hand Surg Eur. 2008;33(5):605–8. https://doi.org/10.1177/1753193408092253.

    Article  CAS  Google Scholar 

  143. Jenis L, Howard S, Rebecca S, Brett Y. Prospective comparison of the effect of direct current electrical stimulation and pulsed electromagnetic fields on instrumented posteolateral lumbar arthrodesis. Spinal Disord. 2000;13:290–6.

    Article  CAS  Google Scholar 

  144. Jorgensen TE. Electrical stimulation of human fracture healing by means of a slow pulsating, asymmetrical direct current. Clin Orthop Rel R. 1977;124:127.

    Google Scholar 

  145. Kahn J. Transcutaneous electrical nerve stimulation for nonunited fractures; a clinical report. Phys Ther. 1982;62:840–4.

    Article  CAS  PubMed  Google Scholar 

  146. Kane WJ. Direct current electrical bone growth stimulation for spinal fusion. Spine. 1988;13:363–5.

    Article  CAS  PubMed  Google Scholar 

  147. Kucharzyk D. A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high risk spinal fusion population. Spine. 1999;24:465–68.

    Article  CAS  PubMed  Google Scholar 

  148. Lazovic M, Kocic M, Dimitrijevic L, Stankovic I, Spalevic M, Ciric T. Pulsed electromagnetic field during cast immobilization in postmenopausal women with Colles’ fracture. Srp Arh Celok Lek. 2012;140(9–10):619–24.

    Article  PubMed  Google Scholar 

  149. Linovitz R, Pathria M, Bernhardt M, Green D, Law M, McGuire R, et al. Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine. 2002;27:1383–9.

    Article  PubMed  Google Scholar 

  150. Livesley PJ, Mugglestone A, Whitton J. Electrotherapy and the management of minimally displaced fracture of the neck of the humerus. Injury. 1992;23:323–6.

    Article  CAS  PubMed  Google Scholar 

  151. Madronero A, Pitillas I, Manso FJ. Pulsed electromagnetic field treatment failure in radius non-united fracture healing. J Biomed Eng. 1988;10:463–6.

    Article  CAS  PubMed  Google Scholar 

  152. Mammi GI, Rocchi R, Cadossi R, et al. The electrical stimulation of tibial osteotomies: A double-blind study. Clin Orthop. 1993;288:246–53.

    Google Scholar 

  153. Marks RA. Spine fusion for discogenic low back pain: outcomes in patients treated with or without pulsed electromagnetic field stimulation. Adv Ther. 2000;17:57–67.

    Article  CAS  PubMed  Google Scholar 

  154. Martinez-Rondanelli A, Martinez JP, Moncada ME, Manzi E, Pinedo CR, Cadavid H. Electromagnetic stimulation as coadjuvant in the healing of diaphyseal femoral fractures: a randomized controlled trial. Colomb Med (Cali). 2014;45(2):67–71.

    Article  Google Scholar 

  155. Massari L, Fini M, Cadossi R. Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Jt Surg Am. 2006;88:56–60.

    Google Scholar 

  156. Masureik C, Eriksson C. Preliminary clinical evaluation of the effect of small electrical currents on the healing of jaw fractures. Clin Orthop Relat R. 1977;124:84–91.

    Google Scholar 

  157. Meskens M, Stuyck J, Mulier J. Treatment of delayed union and nonunion of the tibia by pulsed electromagnetic fields. Bull Hosp Jt Dis Orthop Inst. 1988;48:170–5.

    CAS  PubMed  Google Scholar 

  158. Paterson D, Simonis RB. Electrical stimulation in the treatment of congenital pseudoarthrosis of the tibia. J Bone Jt Surg Br. 1985;67:454–62.

    Article  CAS  Google Scholar 

  159. Punt BJ, Den Hoed PT, Fontijne WPJ. Pulsed electromagnetic fields in the treatment of nonunion. Eur J Orthop Surg Traumatol. 2008;18:127–33.

    Article  Google Scholar 

  160. Reilingh ML, van Bergen CJA, Gerards RM, van Eekeren IC, de Haan RJ, Sierevelt IN, et al. Effects of pulsed electromagnetic fields on return to sports after arthroscopic debridement and microfracture of osteochondral talar defects: a randomized, double-blind, placebo-controlled, multicenter trial. Am J Sports Med. 2016;44(5):1292–300. https://doi.org/10.1177/0363546515626544.

    Article  PubMed  Google Scholar 

  161. Rogozinski A, Rogozinski C. Efficacy of implanted bone growth stimulation in instrumented lumbosacral spinal fusion. Spine. 1996;21:2479–483.

    Article  CAS  PubMed  Google Scholar 

  162. Saltzman C, Lightfoot A, Amendola A. PEMF as treatment for delayed healing of foot and ankle arthrodesis. Foot Ankle Int. 2004;25:771–3.

    Article  PubMed  Google Scholar 

  163. Scott G, King JB. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Jt Surg Am. 1994;76:820–6.

    Article  CAS  Google Scholar 

  164. Shi H, Xiong J, Chen Y, Wang J, Qiu X, Wang Y, et al. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study. BMC Musculoskelet Disord. 2013;14:35. https://doi.org/10.1186/1471-2474-14-35.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Simmons JW. Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop Relat Res. 1985;183:127.

    Google Scholar 

  166. Simmons JW, Mooney V, Thacker I. Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J Orthop. 2004;33:27–30.

    PubMed  Google Scholar 

  167. Streit A, Watson BC, Granata JD, Philbin TM, Lin H-N, O’Connor JP, et al. Effect on clinical outcome and growth factor synthesis with adjunctive use of pulsed electromagnetic fields for fifth metatarsal nonunion fracture: a double-blind randomized study. Foot Ankle Int. 2016;37(9):919–23. https://doi.org/10.1177/1071100716652621.

    Article  PubMed  Google Scholar 

  168. Steinberg ME, Brighton CT, Bands RE, Hartman KM. Capacitive coupling as an adjunctive treatment for avascular necrosis. Clin Orthop Relat Res. 1990;261:11–8.

    Google Scholar 

  169. van Bergen CJA, Blankevoort L, de Haan RJ, Sierevelt IN, Meuffels DE, d’Hooghe PRN, et al. Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial. BMC Musculoskelet Disord. 2009;10:83. https://doi.org/10.1186/1471-2474-10-83.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wahlstrom O, Knutsson H. A device for generation of electromagnetic fields of extremely low frequency. J Biomed Eng. 1984;6:293–6.

    Article  CAS  PubMed  Google Scholar 

  171. Welch WC, Willis SL, Gerszten PC. Implantable direct current stimulation in para-axial cervical arthrodesis. Adv Ther. 2004;21:389–400.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by the Friedrichsheim Foundation (Stiftung Friedrichsheim) based in Frankfurt/Main, Germany, and the Chinese Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H Barker.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavsar, M.B., Han, Z., DeCoster, T. et al. Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it?. Eur J Trauma Emerg Surg 46, 245–264 (2020). https://doi.org/10.1007/s00068-019-01127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-019-01127-z

Keywords

Navigation