Skip to main content
Log in

The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Once an initial vertebral fracture is sustained, the risk of subsequent vertebral fracture increases significantly. This phenomenon has been termed the “vertebral fracture cascade”. Mechanisms underlying this fracture cascade are inadequately understood, creating uncertainty in the clinical environment regarding prevention of further fractures. The cascade cannot be explained by low bone mass alone, suggesting that factors independent of this parameter contribute to its aetiopathogenesis. This review explores physiologic properties that may help to explain the vertebral fracture cascade. Differences in bone properties, including bone mineral density and bone quality, between individuals with and those without osteoporotic vertebral fractures are discussed. Evidence suggests that non-bone parameters differ between individuals with and those without osteoporotic vertebral fractures. Spinal properties, including vertebral macroarchitecture, intervertebral disc integrity, spinal curvature and spinal loading are compared in these groups of individuals. Cross-sectional studies also indicate that neurophysiologic properties, particularly trunk control and balance, are affected by the presence of a vertebral fracture. This review provides a synthesis of the literature to highlight the multi-factorial aetiopathogenesis of the vertebral fracture cascade. With a more comprehensive understanding of the mechanisms underlying this clinical problem, more effective preventative strategies may be developed to offset the fracture cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Oleksik A, Ewing S, Shen W et al (2005) Impact of incident vertebral fractures on health related quality of life (HRQOL) in postmenopausal women with prevalent vertebral fractures. Osteoporos Int 16:861–870

    Article  PubMed  Google Scholar 

  2. Ensrud KE, Nevitt MC, Palermo L et al (1999) What proportion of incident morphometric vertebral fractures are clinically diagnosed and vice versa. J Bone Miner Res 14:S138

    Article  Google Scholar 

  3. Delmas PD, van de Langerijt L, Watts NB et al (2005) Underdiagnosis of vertebral fracture is a worldwide problem: the IMPACT study. J Bone Miner Res 20:557–563

    Article  PubMed  Google Scholar 

  4. Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  PubMed  CAS  Google Scholar 

  5. Lunt M, O’Neill TW, Felsenberg D et al (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European prospective osteoporosis study (EPOS). Bone 33:505–513

    Article  PubMed  Google Scholar 

  6. Ross PD, Davis JW, Epstein RS et al (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    PubMed  CAS  Google Scholar 

  7. Ross PD, Genant HK, Davis JW et al (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126

    Article  PubMed  CAS  Google Scholar 

  8. Ensrud KE, Black DM, Harris F et al (1997) Correlates of kyphosis in older women. J Amer Geriat Soc 45:682–687

    PubMed  CAS  Google Scholar 

  9. Gabriel SE, Tosteson ANA, Leibson CL et al (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13:323–330

    Article  PubMed  CAS  Google Scholar 

  10. Lindsay R, Burge RT, Strauss DM (2005) One year outcomes and costs following a vertebral fracture. Osteoporos Int 16:78–85

    Article  PubMed  CAS  Google Scholar 

  11. Pluijm SFM, Tromp AM, Smit JH et al (2000) Consequences of vertebral deformities in older men and women. J Bone Miner Res 15:1564–1572

    Article  PubMed  CAS  Google Scholar 

  12. Kleerekoper M, Nelson DA (1997) Which bone density measurement? J Bone Miner Res 12:712–714

    Article  PubMed  CAS  Google Scholar 

  13. Singer K, Edmondston S, Day R et al (1995) Prediction of thoracic and lumbar vertebral body compressive strength. Correlations with bone mineral density and vertebral region. Bone 17:167–174

    Article  PubMed  CAS  Google Scholar 

  14. NIH Consensus Development Panel on Osteoporosis Prevention (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  15. Recker RR (1993) Architecture and vertebral fracture. Calcif Tissue Int 53:S139–S142

    Article  PubMed  Google Scholar 

  16. Seeman E, Delmas PD (2006) Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  17. Watts NB (2002) Bone quality: getting closer to a definition. J Bone Miner Res 17:1148–1150

    Article  PubMed  Google Scholar 

  18. Borah B, Dufresne TE, Chmielewski PI et al (2002) Risedronate preserves trabecular architecture and increases bone strength in vertebrae of ovariectomized minipigs as measured by three-dimensional micro-computed tomography. J Bone Miner Res 17:1139–1147

    Article  PubMed  CAS  Google Scholar 

  19. Kabel J, Van-Rietbergen B, Odgaard A et al (1999) Constitutive relationships of fabric density, and elastic properties in cancellous bone architecture. Bone 25:481–486

    Article  PubMed  CAS  Google Scholar 

  20. Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of the effect of alendronate on risk of fracture in women without existing vertebral fractures. Lancet 348:1535–1541

    Article  PubMed  CAS  Google Scholar 

  21. Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. JAMA 282:637–645

    Article  PubMed  CAS  Google Scholar 

  22. Fazzalari NL, Forwood MR, Smith K et al (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 22:381–388

    Article  PubMed  CAS  Google Scholar 

  23. Legrand E, Chappard D, Pascaretti C et al (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19

    Article  PubMed  CAS  Google Scholar 

  24. Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    PubMed  CAS  Google Scholar 

  25. Grey C, Young R, Bearcroft PWP et al (1996) Vertebral deformity in the thoracic spine in post-menopausal women: value of lumbar spine bone density. Br J Radiol 69:137–142

    PubMed  CAS  Google Scholar 

  26. Hordon LD, Raisi M, Aaron JE et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture. I. Two-dimensional histology. Bone 27:271–276

    Article  PubMed  CAS  Google Scholar 

  27. Jergas M, Breitenseher M, Gluer CC et al (1995) Which vertebrae should be assessed using lateral dual-energy x-ray absorptiometry of the lumbar spine. Osteoporos Int 5:196–204

    Article  PubMed  CAS  Google Scholar 

  28. Mitra D, Elvins DM, Speden DJ et al (2000) The prevalence of vertebral fractures in mild ankylosing spondylitis and their relationship to bone mineral density. Rheumatology 39:85–89

    Article  PubMed  CAS  Google Scholar 

  29. Ciarelli TE, Fyhrie DP, Parfitt AM (2003) Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32:311–315

    Article  PubMed  CAS  Google Scholar 

  30. Cvijanovic O, Bobinac D, Zoricic S et al (2004) Age and region dependent changes in human lumbar vertebral bone. A histomorphometric study. Spine 24:2370–2375

    Article  Google Scholar 

  31. Simpson EK, Parkinson IH, Manthey B et al (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687

    Article  PubMed  CAS  Google Scholar 

  32. Thomsen JS, Ebbesen EN, Mosekilde LI (2002) Zone-dependent changes in human vertebral trabecular bone: clinical implications. Bone 30:664–669

    Article  PubMed  Google Scholar 

  33. Banse X, Devogelaer JP, Munting E et al (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28:563–571

    Article  PubMed  CAS  Google Scholar 

  34. Sandor TA, Felsenberg D, Kalender WA et al (1991) Global and regional variations in the spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab 72:1157–1168

    Article  PubMed  CAS  Google Scholar 

  35. Briggs AM, Wark JD, Kantor S et al (2006) Bone mineral density distribution in thoracic and lumbar vertebrae: an ex vivo study using dual energy x-ray absorptiometry. Bone 38:286–288

    Article  PubMed  Google Scholar 

  36. Pollintine P, Tobias JH, McNally DS et al (2002) Intervertebral disc degeneration increases load-bearing by the neural arch and reduces BMD in the anterior vertebral body. J Bone Miner Res 17:F9

    Google Scholar 

  37. Sandor T, Felsenberg D, Brown E (1997) Discriminability of fracture and non-fracture cases based on the spatial distribution of spinal bone mineral. J Comp Assist Tomog 21:498–505

    Article  CAS  Google Scholar 

  38. Briggs A, Wark J, Phillips B et al (2005) Subregional bone mineral density characteristics in the lumbar spine: an in vivo pilot study using dual energy x-ray absorptiometry. Annual Scientific Meeting of the Australian and New Zealand Bone and Mineral Society, Perth, Australia

  39. Aaron JE, Shore PA, Shore RC et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture. II. Three-dimensional histology. Bone 27:277–282

    Article  PubMed  CAS  Google Scholar 

  40. Kleerekoper M, Villaneueva AR, Stanciu J et al (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    Article  PubMed  CAS  Google Scholar 

  41. Oleksik A, Ott SM, Vedi S et al (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375

    Article  PubMed  CAS  Google Scholar 

  42. Qui SJ, Rao DS, Palnitkar S et al (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18:1657–1663

    Article  Google Scholar 

  43. Bell KL, Loveridge N, Power J et al (1999) Intracapsular hip fracture: increased cortical remodeling in the thinned and porous anterior region of the femoral neck. Osteoporos Int 10:248–257

    Article  PubMed  CAS  Google Scholar 

  44. Ciarelli TE, Fyhrie DP, Schaffler MB et al (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and controls. J Bone Miner Res 15:32–40

    Article  PubMed  CAS  Google Scholar 

  45. Homminga J, McCreadie BR, Ciarelli TE et al (2002) Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structural level, not on the bone hard tissue level. Bone 30:759–764

    Article  PubMed  CAS  Google Scholar 

  46. Burr D (2003) Microdamage and bone strength. Osteoporos Int 14:S67–S72

    Article  PubMed  Google Scholar 

  47. Qui SJ, Rao DS, Fyhrie DP et al (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37:10–15

    Article  Google Scholar 

  48. Vashishth D, Verborgt O, Divine G et al (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26:375–380

    Article  PubMed  CAS  Google Scholar 

  49. Tracy JK, Meyer WA, Grigoryan M et al (2006) Racial differences in the prevalence of vertebral fractures in older men: the Baltimore men’s osteoporosis study. Osteoporos Int 17:99–104

    Article  PubMed  Google Scholar 

  50. Qui SJ, Rao DS, Palnitkar S et al (2006) Differences in osteocyte density between black and white American women. Bone 38:130–135

    Article  Google Scholar 

  51. Mosekilde L, Mosekilde L (1988) Iliac crest trabecular bone volume as a predictor for vertebral compressive strength, ash density, and trabecular bone volume in normal individuals. Bone 9:195–199

    Article  PubMed  CAS  Google Scholar 

  52. Heaney RP, Avioli LV, Chesnut CHI et al (1995) Ultrasound velocity through bone predicts incident vertebral deformity. J Bone Miner Res 10:341–345

    PubMed  CAS  Google Scholar 

  53. Stewart A, Kumar V, Reid DM (2006) Long-term fracture prediction by DXA and QUS: a 10-year prospective study. J Bone Miner Res 21:413–418

    Article  PubMed  Google Scholar 

  54. Fiore CE, Pennisi P, Gibilaro M et al (1999) Correlation of quantitative ultrasound of bone with biochemical markers of bone resorption in women with osteoporotic fractures. J Clin Densitom 2:231–239

    Article  PubMed  CAS  Google Scholar 

  55. Gonnelli S, Cepollaro C, Agnusdei D et al (1995) Diagnostic value of ultrasound analysis and bone densitometry as predictors of vertebral deformity in postmenopausal women. Osteoporos Int 5:413–418

    Article  PubMed  CAS  Google Scholar 

  56. Di Stefano M, Isaia GC (2002) Ability of ultrasound bone profile score (UBPS) to discriminate between fractured and not fractured osteoporotic women. Ultrasound Med Biol 28:1485–1489

    Article  PubMed  Google Scholar 

  57. Wehrli FW, Hilaire L, Fernandez-Seara M et al (2002) Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 17:2265–2273

    Article  PubMed  Google Scholar 

  58. Teo JCM, Si-Hoe KM, Keh JEL et al (2006) Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech 21:235–244

    Article  Google Scholar 

  59. Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836

    Article  PubMed  Google Scholar 

  60. Black DM, Arden NK, Palermo L et al (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828

    Article  PubMed  CAS  Google Scholar 

  61. Chapurlat RD, Bauer DC, Nevitt M et al (2003) Incidence and risk factors for a second hip fracture in elderly women. The study of osteoporotic fractures. Osteoporos Int 14:130–136

    PubMed  CAS  Google Scholar 

  62. Mazess RB, Barden H, Mautalen C et al (1994) Normalization of spine densitometry. J Bone Miner Res 9:541–548

    PubMed  CAS  Google Scholar 

  63. Vega E, Ghiringhelli G, Mautalen C et al (1998) Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int 62:465–469

    Article  PubMed  CAS  Google Scholar 

  64. Duan YB, Parfitt AM, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802

    Article  PubMed  CAS  Google Scholar 

  65. Gilsanz V, Loro LM, Roe TF et al (1995) Vertebral size in elderly women with osteoporosis: mechanical implications and relationships to fractures. J Clin Invest 95:2332–2337

    Article  PubMed  CAS  Google Scholar 

  66. Tveit P, Daggfeldt K, Hetland S et al (1994) Erector spinae lever arm length variations with changes in spinal curvature. Spine 19:199–204

    Article  PubMed  CAS  Google Scholar 

  67. Margulies JY, Payzer A, Nyska M et al (1996) The relationship between degenerative changes and osteoporosis in the lumbar spine. Clin Orthop Relat Res 324:145–152

    Article  PubMed  Google Scholar 

  68. Briggs AM, Wrigley TV, van Dieën JH et al (2006) The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J 15:1785–1795

    Article  PubMed  Google Scholar 

  69. Adams MA, Freeman BJC, Morrison HP et al (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25:1625–1636

    Article  PubMed  CAS  Google Scholar 

  70. Adams MA, McMillan DW, Green TP et al (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 21:434–438

    Article  PubMed  CAS  Google Scholar 

  71. Sornay-Rendu E, Munoz F, Duboeuf F et al (2004) Disc space narrowing is associated with increased vertebral fracture risk in postmenopausal women: the OFELY study. J Bone Miner Res 19:1994–1999

    Article  PubMed  Google Scholar 

  72. Kurowski P, Kubo A (1986) The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae. Spine 11:726–731

    Article  PubMed  CAS  Google Scholar 

  73. Pollintine P, Dolan P, Tobias JH et al (2004) Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body—a cause of osteoporotic vertebral fracture? Spine 29:774–782

    Article  PubMed  Google Scholar 

  74. McCubbery DA, Cody DD, Peterson EL et al (1995) Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J Biomech 28:891–899

    Article  Google Scholar 

  75. Cortet B, Roches E, Logier G et al (2002) Evaluation of spinal curvatures after a recent osteoporotic vertebral fracture. Joint Bone Spine 69:201–208

    Article  PubMed  Google Scholar 

  76. Keller TS, Harrison DE, Colloca CJ et al (2003) Prediction of osteoporotic spinal deformity. Spine 28:455–462

    Article  PubMed  Google Scholar 

  77. Lombardi I, Oliveira LM, Mayer AF et al (2005) Evaluation of pulmonary function and quality of life in women with osteoporosis. Osteoporos Int 16:1247–1253

    Article  PubMed  Google Scholar 

  78. De Smet AA, Robinson RG, Johnson BE et al (1988) Spinal compression fractures in osteoporotic women: patterns and relationship to hyperkyphosis. Radiology 166:497–500

    PubMed  Google Scholar 

  79. Greig AM (2006) Relationships between vertebral fracture, thoracic kyphosis and postural control in individuals with osteoporosis. Doctoral thesis, University of Melbourne

  80. Schneider DL, von Muhlen DG, Barrett-Connor E et al (2004) Kyphosis does not equal vertebral fractures: the Rancho Bernardo study. J Rheumatol 31:747–752

    PubMed  Google Scholar 

  81. Shipp KM, Guess HA, Ensrud KE et al (2002) Thoracic kyphosis and rate of incident vertebral fracture. J Bone Miner Res 17:S174

    Google Scholar 

  82. Huang MH, Barrett-Connor E, Greendale GA et al (2006) Hyperkyphotic posture and risk of future osteoporotic fractures: the Rancho Bernado study. J Bone Miner Res 21:419–423

    Article  PubMed  Google Scholar 

  83. Komemushi A, Tanigawa N, Kariya S et al (2005) Percutaneous vertebroplasty for compression fracture: analysis of vertebral body volume by CT volumetry. Acta Radiol 46:276–279

    Article  PubMed  CAS  Google Scholar 

  84. Pradhan B, Bae HW, Kropf MA et al (2006) Kyphoplasty reduction of osteoporotic vertebral compression fractures: correction of local kyphosis versus overall sagittal alignment. Spine 31:435–441

    Article  PubMed  Google Scholar 

  85. Garfin SR, Yuan HA, Reiley MA (2001) New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26:1511–1515

    Article  PubMed  CAS  Google Scholar 

  86. Fribourg D, Tang C, Delamarter R et al (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29:2270–2276

    Article  PubMed  Google Scholar 

  87. Cooper C, Atkinson EJ, O’Fallon WM et al (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227

    Article  PubMed  CAS  Google Scholar 

  88. Lynn SG, Sinaki M, Westerlind KC (1997) Balance characteristics of persons with osteoporosis. Arch Phys Med Rehabil 78:273–277

    Article  PubMed  CAS  Google Scholar 

  89. Sinaki M, Brey RH, Hughes CA et al (2005) Balance disorder and increased risk of falls in osteoporosis and kyphosis: significance of kyphotic posture and muscle strength. Osteoporos Int 16:1004–1010

    Article  PubMed  Google Scholar 

  90. Carpenter MG, Frank JS, Silcher CP et al (2001) The influence of postural threat on the control of upright stance. Exp Brain Res 138:210–218

    Article  PubMed  CAS  Google Scholar 

  91. Marras W, Davis KG, Ferguson SA et al (2001) Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine 26:2566–2574

    Article  PubMed  CAS  Google Scholar 

  92. Horak FB, Nashner LM (1986) Central programming of postural movements: adaptations to altered support-surface configurations. J Neurophysiol 55:1369–1381

    PubMed  CAS  Google Scholar 

  93. Briggs AM, Greig AM, Bennell KL et al (2007) Paraspinal muscle control in people with osteoporotic vertebral fracture. Eur Spine J. DOI 10.1007/s00586-006-0276-8

  94. Kopperdahl DL, Pearlman JL, Keaveny TM (2000) Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res 18:685–690

    Article  PubMed  CAS  Google Scholar 

  95. Hodges PW, Richardson CA (1999) Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil 80:1005–1012

    Article  PubMed  CAS  Google Scholar 

  96. Cook DJ, Guyatt GH, Adachi JD et al (1993) Quality of life issues in women with vertebral fractures due to osteoporosis. Arthritis Rheum 36:750–756

    Article  PubMed  CAS  Google Scholar 

  97. Balzini L, Vannucchi L, Benvenuti F et al (2003) Clinical characteristics of flexed posture in elderly women. J Amer Geriatr Soc 51:1419–1426

    Article  PubMed  Google Scholar 

  98. Schleich C, Minne HW, Bruckner T et al (1998) Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 8:261–267

    Article  Google Scholar 

  99. Dixon WG, Lunt M, Pye SR et al (2005) Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology 44:642–646

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Wark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggs, A.M., Greig, A.M. & Wark, J.D. The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis. Osteoporos Int 18, 575–584 (2007). https://doi.org/10.1007/s00198-006-0304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0304-x

Keywords

Navigation