Skip to main content

Advertisement

Log in

Distinguishing stress fractures from pathologic fractures: a multimodality approach

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A―D
Fig. 2A―E
Fig. 3A―E
Fig. 4A―C
Fig. 5A―E
Fig. 6A, B
Fig. 7A―C
Fig. 8A―C
Fig. 9A―C
Fig. 10A, B
Fig. 11A―E
Fig. 12A―H
Fig. 13A―C
Fig. 14

Similar content being viewed by others

References

  1. Pentecost RL, Murray RA, Brindley HH. Fatigue, insufficiency, and pathologic fractures. JAMA 1964;187:1001–1004.

    CAS  PubMed  Google Scholar 

  2. Blatz DJ. Bilateral femoral and tibial shaft stress fractures in a runner. Am J Sports Med 1981; 9:322–325.

    Google Scholar 

  3. Orava S, Jormakka E, Hulkko A. Stress fractures in young athletes. Arch Orthop Trauma Surg 1981; 98:271–274.

    Article  CAS  PubMed  Google Scholar 

  4. Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A. Risk factors for recurrent stress fractures in athletes. Am J Sports Med 2000; 29:304–310.

    Google Scholar 

  5. Schickendantz MS, Ho CP, Koh J. Stress injury of the proximal ulna in professional baseball players. Am J Sports Med 2002; 30:737–741.

    PubMed  Google Scholar 

  6. Hulkko A, Orava S. Stress fractures in athletes. Int J Sports Med 1987; 8:221–226.

    CAS  PubMed  Google Scholar 

  7. Shon IH, Fogelman I. F-18 FDG positron emission tomography and benign fractures. Clin Nucl Med 2003; 28:171–175.

    Article  PubMed  Google Scholar 

  8. Meyer M, Gast T, Raja S, Hubner K. Increased F-18 accumulation in an acute fracture. Clin Nucl Med 1994; 19:13–14.

    CAS  PubMed  Google Scholar 

  9. Wilcox JR, Moniot AL, Green P. Bone scanning in the evaluation of exercise related stress injuries. Radiology 1977; 123:699–703.

    PubMed  Google Scholar 

  10. Deutsch AL, Coel MN, Mink JH. Imaging of stress injuries to bone. Radiography, scintigraphy, and MR imaging. Clin Sports Med 1997;16:275–290.

    CAS  PubMed  Google Scholar 

  11. Fayad LM, Cohade C, Wahl RL, Fishman EK. Sacral fractures: a potential pitfall of FDG positron emission tomography. AJR Am J Roentgenol 2003; 181:1239–1243.

    PubMed  Google Scholar 

  12. Soubrier M, Dubost JJ, Boisgard S, Sauvezie B, Gaillard P, Michel JL, Ristori JM. Insufficiency fracture. A survey of 60 cases and review of the literature. Joint Bone Spine 2003; 70:209–218.

    Google Scholar 

  13. Anderson MW, Ugalde V, Batt M, Gacayan J. Shin splints: MR appearance in a preliminary study. Radiology 1997; 204:177–180.

    CAS  PubMed  Google Scholar 

  14. Umans HR, Kaye JJ. Longitudinal stress fractures of the tibia: diagnosis by magnetic resonance imaging. Skeletal Radiol 1996; 25:319–324.

    Article  CAS  PubMed  Google Scholar 

  15. Allen GJ. Longitudinal stress fractures of the tibia: diagnosis with CT. Radiology 1988; 167:799–801.

    CAS  PubMed  Google Scholar 

  16. Resnick D, Goergen TG, Pathria MN. Physical Injury. In: Resnick, D, ed. Bone and joint imaging, 2nd edn. Philadelphia: WB Saunders, 1996:723–815.

  17. Buckwalter JA, Brandser EA. Stress and insufficiency fractures. Am Fam Physician 1997; 56:175–182.

    CAS  PubMed  Google Scholar 

  18. Shearman CM, Brandser EA, Parman LM, et al. Longitudinal tibial stress fractures: a report of eight cases and review of the literature. J Comput Assist Tomogr 1998; 22:265–269.

    Google Scholar 

  19. Pauleit D, Sommer T, Textor J, et al. MRI diagnosis in longitudinal stress fractures: differential diagnosis of Ewing sarcoma. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1999; 170:28–34.

    CAS  PubMed  Google Scholar 

  20. Yuh WTC, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 1989; 172:215–218.

    CAS  PubMed  Google Scholar 

  21. Bertuna G, Fama P, Lo Nigro L, Russo-Mancuso G, Di Cataldo A. Marked osteoporosis and spontaneous vertebral fractures in children: don’t forget, it could be leukemia. Med Pediatr Oncol 2003; 41:450–454.

    Google Scholar 

  22. Yousem D, Magid D, Fishman EK, Kuhajda F, Siegelman SS. Computed tomography of stress fractures. J Comput Assist Tomogr 1986; 10:92–95.

    Google Scholar 

  23. Somer K, Meurman KO. Computed tomography of stress fractures. J Comput Assist Tomogr 1982; 6:109–115.

    Google Scholar 

  24. Murcia M, Brennan RE, Edeiken J. Computed tomography of stress fracture. Skeletal Radiol 1982; 8:193–195.

    Article  CAS  PubMed  Google Scholar 

  25. Feydy A, Drape JL, Beret E, et al. Longitudinal stress fractures of the tibia: comparative study of CT and MR imaging. Eur Radiol 1998; 8:598–602.

    Article  CAS  PubMed  Google Scholar 

  26. Spitz DJ, Newberg AH. Imaging of stress fractures in the athlete. Radiol Clin North Am 2002; 40:313–331.

    PubMed  Google Scholar 

  27. Lingg GM, Soltesz I, Kessler S, Dreher R. Insufficiency and stress fractures of the long bones occurring in patients with rheumatoid arthritis and other inflammatory diseases, with a contribution on the possibilities of computed tomography. Eur J Radiol 1997; 26:54–63.

    Article  CAS  PubMed  Google Scholar 

  28. Reinus WR, Gilula LA, Donaldson S, Shuster J, Glicksman A, Vietti TJ. Prognostic features of Ewing sarcoma on plain radiograph and computed tomography scan after initial treatment. A Pediatric Oncology Group study (8346). Cancer 1993; 72:2503–2510.

    CAS  PubMed  Google Scholar 

  29. Murphey MD, wan Jaovisidha S, Temple HT, Gannon FH, Jelinek JS, Malawer MM. Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology 2003; 229:545–553.

    PubMed  Google Scholar 

  30. van der Woude HJ, Bloem JL, Verstraete KL, Taminiau AH, Nooy MA, Hogendoorn PC. Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. AJR Am J Roentgenol 1995; 165:593–598.

    PubMed  Google Scholar 

  31. Scott WW Jr, Fishman EK, Magid D. Acetabular fractures: optimal imaging. Radiology 1987; 165:537–539.

    PubMed  Google Scholar 

  32. Newton PO, Hahn GW, Fricka KB, Wenger DR. Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spinal anomalies. Spine 2002; 27:844–850.

    Article  PubMed  Google Scholar 

  33. Soderlund V, Radiological diagnosis of skeletal metastases. Eur Radiol 1996; 6:587–595.

    CAS  PubMed  Google Scholar 

  34. Mirzaei S, Filipits M, Keck A, Bergmayer W, Knoll P, Koehn H, Ludwig Pecherstorfer M. Comparison of Technetium-99m MIBI imaging with MRI for detection of spine involvement in patients with multiple myeloma. BMC Nucl Med 2003; 3:2.

    Article  PubMed  Google Scholar 

  35. Stafford SA, Rosenthal DI, Gebhardt MC, Brady TJ, Scott JA. MRI in stress fracture. AJR Am J Roentgenol 1986; 147:553–556.

    CAS  PubMed  Google Scholar 

  36. Tyrrell PNM, Davies AM. Magnetic resonance imaging appearances of fatigue fractures of the long bones of the lower limb. Br J Radiol 1994; 67:332–338.

    CAS  PubMed  Google Scholar 

  37. Cabitza P, Tamim H. Occult fractures of tibial plateau detected employing magnetic resonance imaging. Arch Orthop Trauma Surg 2000; 120:355–357.

    Google Scholar 

  38. Yamamoto T, Schneider R, Bullough PG. Subchondral insufficiency fracture of the femoral head: histopathologic correlation with MRI. Skeletal Radiol 2001; 30:247–254.

    Article  CAS  PubMed  Google Scholar 

  39. Lee JK, Yao L. Stress fractures: MR imaging. Radiology 1988; 169:217–220.

    CAS  PubMed  Google Scholar 

  40. Baur A, Stabler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 2002; 225:730–735.

    PubMed  Google Scholar 

  41. Zampa V, Cosottini M, Michelassi C, Ortori S, Bruschini L, Bartolozzi C. Value of opposed-phase gradient-echo technique in distinguishing between benign and malignant vertebral lesions. Eur Radiol 2002; 12:1811–1818.

    Google Scholar 

  42. Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 1997; 169:1439–1447.

    CAS  PubMed  Google Scholar 

  43. Spuentrup E, Buecker A, Adam G, van Vaals JJ, Guenther RW. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR Am J Roentgenol 2001; 176:351–358.

    CAS  PubMed  Google Scholar 

  44. Herneth AM, Phillip MO, Naude J, Funovics M, Beichel RR, Bammer R, Imhof H. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 2002; 225:889–894.

    PubMed  Google Scholar 

  45. Oya N, Aoki J, Shinozaki T, Watanabe H, Takagishi K, Endo K. Preliminary study of proton magnetic resonance spectroscopy in bone and soft tissue tumors: an unassigned signal at 2.0–2.1 ppm may be a possible indicator of malignant neuroectodermal tumor. Radiat Med 20000; 18:193–198.

    CAS  Google Scholar 

  46. Hanna SL, Fletcher BD, Parham DM, Bugg MF. Muscle edema in musculoskeletal tumors: MR imaging characteristics and clinical significance. J Magn Reson Imaging 1991; 1:441–449.

    CAS  PubMed  Google Scholar 

  47. Steinborn M, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 1999; 23:123–129.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Fayad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayad, L.M., Kamel, I.R., Kawamoto, S. et al. Distinguishing stress fractures from pathologic fractures: a multimodality approach. Skeletal Radiol 34, 245–259 (2005). https://doi.org/10.1007/s00256-004-0872-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-004-0872-9

Keywords

Navigation