Skip to main content

Advertisement

Log in

Amniotic membrane: from structure and functions to clinical applications

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Amniotic membrane (AM) or amnion is a thin membrane on the inner side of the fetal placenta; it completely surrounds the embryo and delimits the amniotic cavity, which is filled by amniotic liquid. In recent years, the structure and function of the amnion have been investigated, particularly the pluripotent properties of AM cells, which are an attractive source for tissue transplantation. AM has anti-inflammatory, anti-bacterial, anti-viral and immunological characteristics, as well as anti-angiogenic and pro-apoptotic features. AM is a promoter of epithelialization and is a non-tumorigenic tissue and its use has no ethical problems. Because of its attractive properties, AM has been applied in several surgical procedures related to ocular surface reconstruction and the genito-urinary tract, skin, head and neck, among others. So far, the best known and most auspicious applications of AM are ocular surface reconstruction, skin applications and tissue engineering. However, AM can also be applied in oncology. In this area, AM can prevent the delivery of nutrients and oxygen to cancer cells and consequently interfere with tumour angiogenesis, growth and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adinolfi M, Akle C, McColl I, Fensom A, Tansley L, Connolly P, His B, Faulk W, Travers P, Bodmer W (1982) Expression of HLA antigens, [beta]2-microglobulin and enzymes by human amniotic epithelial cells. Nature 295:325–327

    Article  PubMed  CAS  Google Scholar 

  • Akashi T, Miyagi T, Ando N, Suzuki Y, Nemoto T, Eishi Y, Nakamura K, Shirasawa T, Osa N, Tanaka N, Burgeson R (1999) Synthesis of basement membrane by gastrointestinal cancer cell lines. J Pathol 187:223–228

    Article  PubMed  CAS  Google Scholar 

  • Akle C, Welsh K, Adinolfi M, Leibowitz S, Mccoll I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 318:1003–1005

    Article  Google Scholar 

  • Amer M, Abd-El-Maeboud K (2006) Amnion graft following hysteroscopic lysis of intrauterine adhesions. J Obstet Gynaecol Res 32:559–566

    Article  PubMed  Google Scholar 

  • Baradaran-Rafii A, Arjmand B, Javadi M (2007) Amniotic membrane transplantation. Iran J Ophthal Res 2:58–75

    Google Scholar 

  • Bari M, Choudhury M, Khan A, Nessa A (2002) Role of human fetal membranes (amniotic membrane) in the management of burn wounds. Ann Burn Fire Disasters 15:12–16

    Google Scholar 

  • Benedetti WL, Sala MA, Alvarez H (1973) Histochemical demonstration of enzymes in the umbilical cord and membranes of human term pregnancy. Eur J Obstet Gynecol Reprod Biol 3:185–189

    Article  CAS  Google Scholar 

  • Benedetto M, De Cicco F, Rossiello F, Nicosia A, Lupi G, Dell Acqua S (1990) Oxytocin receptor in human fetal membranes at term and during labor. J Steroid Biochem 35:205–208

    Article  PubMed  CAS  Google Scholar 

  • Benirschke K (2000) Pathology of the human placenta. Springer, New York

    Google Scholar 

  • Boudreau N, Sympson C, Werb Z, Bissell M (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893

    Article  PubMed  CAS  Google Scholar 

  • Bourne G (1960) The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol 79:1070–1073

    PubMed  CAS  Google Scholar 

  • Bryant-Greenwood G, Rees M, Turnbull A (1987) Immunohistochemical localization of relaxin, prolactin and prostaglandin synthase in human amnion, chorion and decidua. J Endocrinol 114:491–496

    Article  PubMed  CAS  Google Scholar 

  • Buhimschi I, Jabr M, Buhimschi C, Petkova A, Weiner C, Saed G (2004) The novel antimicrobial peptide β3- defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Am J Obstet Gynecol 191:1678–1687

    Article  PubMed  CAS  Google Scholar 

  • Burman S, Tejwani S, Vemuganti G, Gopinathan U, Sangwan V (2004) Ophthalmic applications of preserved human amniotic membrane: a review of current indications. Cell Tissue Bank 5:161–175

    Article  PubMed  Google Scholar 

  • Bussink J, Kaander J, Kogel A van der (2003) Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67:3–15

    Article  PubMed  Google Scholar 

  • Capeáns C, Piñeiro A, Pardo M, Sueiro-López C, Blanco M, Domínguez F, Sánchez-Salorio M (2003) Amniotic membrane as support for human retinal pigment epithelium (RPE) cell growth. Acta Ophthalmol Scand 81:271–277

    Article  PubMed  Google Scholar 

  • Cheung P, Walton J, Tai H, Riley S, Challis J (1990) Immunocytochemical distribution and localization of 15- hydroxyprostaglandin dehydrogenase in human fetal membranes, decidua, and placenta. Am J Obstet Gynecol 163:1445–1449

    PubMed  CAS  Google Scholar 

  • Choi T, Tseng S (2001) In vivo and in vitro demonstration of epithelial cell-induced myofibroblast differentiation of keratocytes and an inhibitory effect by amniotic membrane. Cornea 20:197–204

    Article  PubMed  CAS  Google Scholar 

  • Cooper G, Hausman R (2003) The cell: a molecular approach. American Socity for Microbiology, Washington

    Google Scholar 

  • Crescimanno C (1993) Immunocytochemical patterns of carbonic anhydrase isoenzymes in human placenta, cord and membranes. Placenta 14:A11

    Article  Google Scholar 

  • Cunningham F (2001) Williams obstetrics. Slock, London

    Google Scholar 

  • Danforth D, Hull R (1958) The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion. Am J Obstet Gynecol 75:536–547

    PubMed  CAS  Google Scholar 

  • Davis J (1910) Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J 15:307

    Google Scholar 

  • Dua H, Gomes J, King A, Maharajan V (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    Article  PubMed  Google Scholar 

  • Enders A, King B (1988) Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am J Anat 181:327–340

    Article  PubMed  CAS  Google Scholar 

  • Fatima A, Balasubramanian D, Iftekhar G, Vemuganti G, Matalia H, Reddy P, Sangwan V (2006) Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation. J Postgrad Med 52:257–261

    PubMed  CAS  Google Scholar 

  • Fernandes M, Sridhar M, Sangwan V, Rao G (2005) Amniotic membrane transplantation for ocular surface reconstruction. Cornea 24:643–653

    Article  PubMed  Google Scholar 

  • Fukuda K, Chikama T, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the AM, cornea, and conjunctiva. Cornea 18:73–79

    Article  PubMed  CAS  Google Scholar 

  • Gibb W, Lavoie J (1990) Effects of glucocorticoids on prostaglandin formation by human amnion. Can J Physiol Pharmacol 68:671–676

    Article  PubMed  CAS  Google Scholar 

  • Gomes J, Romano A, Santos M, Dua H (2005) Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 16:233–240

    Article  PubMed  Google Scholar 

  • Guo M, Grinnell F (1989) Basement membrane and human epidermal differentiation in vitro. J Invest Dermatol 93:372–378

    Article  PubMed  CAS  Google Scholar 

  • Hajiiski O (1990) Amniotic membranes for temporary burn coverage. Ann Burn Fire Disasters 9:88–92

    Google Scholar 

  • Hammer A, Hutter H, Blaschitz A, Mahnert W, Hartmann M, Uchanska-Ziegler B, Ziegler A, Dohr G (1997) Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. Am J Reprod Immunol 37:161–171

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Ma D, Hwang D, Kim W, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human AM. Cornea 19:348–352

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Meyer-Hoffert U, Teran L, Schwichtenberg L, Bartels J, Maune S, Schroder J (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22:714–721

    PubMed  CAS  Google Scholar 

  • Herendael B van, Oberti C, Brosens I (1978) Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. Am J Obstet Gynecol 131:872–880

    PubMed  Google Scholar 

  • Higa K, Shimmura S, Shimazaki J, Tsubota K (2005) Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea 24:206–212

    Article  PubMed  Google Scholar 

  • Houlihan J, Biro P, Harper H, Jenkinson H, Holmes C (1995) The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G. J Immunol 154:5665–5674

    PubMed  CAS  Google Scholar 

  • Ishino Y, Sano Y, Nakamura T, Connon C, Rigby H, Fullwood N, Kinoshita S (2004) Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci 45:800–806

    Article  PubMed  Google Scholar 

  • Jin C, Park S, Choi B, Lee K, Kang C, Min B (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13:693–702

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Challis J (1989) Local stimulation of prostaglandin production by corticotropin-releasing hormone in human fetal membranes and placenta. Biochem Biophys Res Commun 159:192–199

    Article  PubMed  CAS  Google Scholar 

  • Kakishita K, Elwan M, Nakao N, Itakura T, Sakuragawa N (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol 165:27–34

    Article  PubMed  CAS  Google Scholar 

  • Kamiya K, Wang M, Uchida S, Amano S, Oshika T, Sakuragawa N, Hori J (2005) Topical application of culture supernatant from human amniotic epithelial cells suppresses inflammatory reactions in cornea. Exp Eye Res 80:671–679

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyamad Y, Miyata T, Okano H (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22:139–153

    Article  PubMed  CAS  Google Scholar 

  • Kanyshkova T, Buneva V, Nevinsky G (2001) Lactoferrin and its biological functions. Biochemistry (Mosc) 66:1–7

    Article  CAS  Google Scholar 

  • Kasahara H, Usheva A, Ueyama T, Aoki H, Horikoshi N, Izumo S (2001) Characterization of homo- and heterodimerization of cardiac Csx/Nkx2.5 homeoprotein. J Biol Chem 276:4570–4580

    Article  PubMed  CAS  Google Scholar 

  • Keelan J, Sato T, Mitchell M (1997) Interleukin (IL)-6 and IL-8 production by human amnion: regulation by cytokines, growth factors, glucocorticoids, phorbol esters, and bacterial lipopolysaccharide. Biol Reprod 57:1438–1444

    Article  PubMed  CAS  Google Scholar 

  • Keelan J, Sato T, Hansen W, Gilmour J, Gupta D, Helsby N, Mitchell M (1999) Interleukin-4 differentially regulates prostaglandin production in amnion-derived WISH cells stimulated with pro-inflammatory cytokines and epidermal growth factor. Prostaglandins Leukot Essent Fatty Acids 60:255–262

    Article  PubMed  CAS  Google Scholar 

  • Khouw I, Wachem P van, Plantinga J, Vujaskovic Z, Wissink M, Leij L de, Luyn M van (1999) TGF-[beta] and bFGF affect the differentiation of proliferating porcine fibroblasts into myofibroblasts in vitro. Biomaterials 20:1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Tseng S (1995a) The effects on inhibition of corneal neovascularization after human AM transplantation in severely damaged rabbit corneas. Korean J Ophthalmol 9:32–46

    PubMed  CAS  Google Scholar 

  • Kim J, Tseng S (1995b) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14:473–484

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kim J, Na B, Jeong J, Song C (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res 70:329–337

    Article  PubMed  CAS  Google Scholar 

  • King A, Critchley H, Sallenave J, Kelly R (2003) Elafin in human endometrium: an antiprotease and antimicrobial molecule expressed during menstruation. J Clin Endocrinol Metab 88:4426–4431

    Article  PubMed  CAS  Google Scholar 

  • King A, Paltoo A, Kelly R, Sallenave J, Bocking A, Challis J (2007) Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28:161–169

    Article  PubMed  CAS  Google Scholar 

  • King B (1985) Related distribution and characterization of anionic sites in the basal lamina of developing human amniotic epithelium. Anat Rec 212:57–62

    Article  PubMed  CAS  Google Scholar 

  • Knudson G (1993) Antioncogenes and human cancer. Proc Natl Acad Sci USA 90:10914–10921

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Kabuyama Y, Sasaki S, Kato K, Homma Y (2002) Suppression of corneal neovascularization by culture supernatant of human amniotic cells. Cornea 21:62–67

    Article  PubMed  Google Scholar 

  • Koizumi N, Inatomi T, Sotozono C, Fullwood N, Quantock A, Kinoshita S (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177

    Article  PubMed  CAS  Google Scholar 

  • Koyano S, Fukui A, Uchida S, Yamada K, Asashima M, Sakuragawa N (2002) Synthesis and release of activin and noggin by cultured human amniotic epithelial cells. Dev Growth Differ 44:103–112

    Article  PubMed  CAS  Google Scholar 

  • Krisanaprakornkit S, Weinberg A, Perez C, Dale B (1998) Expression of the peptide antibiotic human beta- defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect Immun 66:4222–4228

    PubMed  CAS  Google Scholar 

  • Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546

    PubMed  CAS  Google Scholar 

  • Lee S, Tseng S (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123:303–312

    PubMed  CAS  Google Scholar 

  • Lee S, Li D, Tan D, Meller D, Tseng S (2000) Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20:325–334

    Article  PubMed  CAS  Google Scholar 

  • Li H, Niederkorn J, Neelam S, Mayhew E, Word R, McCulley J, Alizadeh H (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907

    Article  PubMed  Google Scholar 

  • Li W, He H, Kawakita T, Espana E, Tseng S (2006) Amniotic membrane induces apoptosis of interferon-[gamma] activated macrophages in vitro. Exp Eye Res 82:282–292

    Article  PubMed  CAS  Google Scholar 

  • Mahgoub M, Ammar A, Fayez M, Edris A, Hazem A, Akl M, Hammam O (2004) Neovascularization of the amniotic membrane as a biological immune barrier. Transplant Proc 36:1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Mencucci R, Paladini I, Menchini U, Gicquel J, Dei R (2011) Inhibition of viral replication in vitro by antiviral-treated amniotic membrane. Possible use of amniotic membrane as drug-delivering tool. Br J Ophthalmol 95:28–31

    Article  PubMed  CAS  Google Scholar 

  • Mermet I, Pottier N, Sainthillier J, Malugani C, Cairey-Remonnay S, Maddens S, Riethmuller D, Tiberghien P, Humbert P, Aubin F (2007) Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair Regen 15:459–464

    Article  PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz D, Strom S (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  PubMed  CAS  Google Scholar 

  • Miller J, Michel J, Bercovici B, Argaman M, Sacks T (1976) Studies on the antimicrobial activity of amniotic fluid. Am J Obstet Gynecol 125:212–214

    PubMed  CAS  Google Scholar 

  • Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C (2002) Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res 63:591–600

    Article  PubMed  CAS  Google Scholar 

  • Mohammad J, Shenaq J, Rabinovsky E, Shenaq S (2000) Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg 105:660–666

    Article  PubMed  CAS  Google Scholar 

  • Muhlhauser J, Crescimanno C, Rajaniemi H, Parkkila S, Milovanov A, Castellucci M, Kaufmann P (1994) Immunohistochemistry of carbonic anhydrase in human placenta and fetal membranes. Histochemistry 101:91–98

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Enosawa S, Mitani T, Li X, Suzuki S, Amemiya H, Koiwai O, Sakuragawa N (2001) Cytological examination of rat amniotic epithelial cells and cell transplantation to the liver. Cell Transplant 10:423–427

    PubMed  CAS  Google Scholar 

  • Ni J, Abrahamson M, Zhang M, Fernandez M, Grubb A, Su J, Yu G, Li Y, Parmelee D, Xing L, Coleman T, Gentz S, Thotakura R, Nguyen N, Hesselberg M, Gentz R (1997) Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J Biol Chem 272:10853–10858

    Article  PubMed  CAS  Google Scholar 

  • Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian A (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99

    PubMed  CAS  Google Scholar 

  • Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S, Sharma A (2006) A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol 293:526–539

    Article  PubMed  CAS  Google Scholar 

  • Ochsenbein-Kölble N, Jani J, Lewi L, Verbist G, Vercruysse L, Portmann-Lanz B, Marquardt K, Zimmermann R, Deprest J (2007) Enhancing sealing of fetal membrane defects using tissue engineered native amniotic scaffolds in the rabbit model. Am J Obstet Gynecol 196:263.e1-263.e7

    Article  Google Scholar 

  • Ogawa A, Terada S, Sakuragawa N, Masuda S, Nagao M, Miki M (2003) Progesterone, but not 17beta-estradiol, up-regulates erythropoietin (EPO) production in human amniotic epithelial cells. J Biosci Bioeng 96:448–453

    PubMed  CAS  Google Scholar 

  • Okazaki T, Casey M, Okita J, MacDonald P, Johnston J (1981) Initiation of human parturition. XII. Biosynthesis and metabolism of prostaglandins in human fetal membranes and uterine decidua. Am J Obstet Gynecol 139:373–381

    PubMed  CAS  Google Scholar 

  • Pabuçcu R, Atay V, Orhon E, Urman B, Ergün A (1997) Hysteroscopic treatment of intrauterine adhesions is safe and effective in the restoration of normal menstruation and fertility. Fertil Steril 68:1141–1143

    Article  PubMed  Google Scholar 

  • Park W, Tseng S (2000) Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophthalmol Vis Sci 41:2906–2914

    PubMed  CAS  Google Scholar 

  • Parry S, Strauss J (1998) Premature rupture of the fetal membranes. N Engl J Med 338:663–670

    Article  PubMed  CAS  Google Scholar 

  • Perera F, Weinstein I (2000) Molecular epidemiology: recent advances and future directions. Carcinogenesis 21:517–524

    Article  PubMed  CAS  Google Scholar 

  • Pollard S, Aye N, Symonds E (1976) Scanning electron microscope appearances of normal human amnion and umbilical cord at term. Br J Obstet Gynaecol 83:470–477

    Article  PubMed  CAS  Google Scholar 

  • Portmann-Lanz C, Ochsenbein-Kölble N, Marquardt K, Lüthi U, Zisch A, Zimmermann R (2007) Manufacture of a cell-free amnion matrix scaffold that supports amnion cell outgrowth in vitro. Placenta 28:6–13

    Article  PubMed  CAS  Google Scholar 

  • Robinson W, McFadden D, Barrett I, Kuchinka B, Peñaherrera M, Bruyère H, Best R, Pedreira D, Langlois S, Kalousek D (2002) Origin of amnion and implications for evaluation of the fetal genotype in cases of mosaicism. Prenat Diagn 22:1076–1085

    Article  PubMed  Google Scholar 

  • Rote N (1993) Expression of IL-1 and IL-6 protein and mrna in amniochorionic membranes. Placenta 14:A63

    Google Scholar 

  • Rotth A (1940) Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol 23:522–525

    Article  Google Scholar 

  • Rukstalis J, Ubeda M, Johnson M, Habener J (2006) Transcription factor snail modulates hormone expression in established endocrine pancreatic cell lines. Endocrinology 147:2997–3006

    Article  PubMed  CAS  Google Scholar 

  • Runić R, Lockwood C, LaChapelle L, Dipasquale B, Demopoulos R, Kumar A, Guller S (1998) Apoptosis and Fas expression in human fetal membranes. J Clin Endocrinol Metab 83:660–666

    Article  PubMed  Google Scholar 

  • Sabella N (1913) Use of the fetal membranes in skin grafting. Med Rec 83:478–480

    Google Scholar 

  • Sadler T (2000) Langmans medical embryology. Slock, London

    Google Scholar 

  • Sakuragawa N, Yoshikawa H, Sasaki M (1992) Amniotic tissue transplantation: clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev 14:7–11

    Article  PubMed  CAS  Google Scholar 

  • Sakuragawaa N, Misawab H, Ohsugia K, Kakishitaa K, Ishiia T, Thangavela R, Tohyamaa J, Elwana M, Yokoyamac Y, Okudaa O, Araia H, Oginod I, Sato K (1997) Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett 232:53–56

    Article  Google Scholar 

  • Scaggiante B, Pineschi A, Sustersich M, Andolina M, Agosti E, Romeo D (1987) Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane. Transplantation 44:59–61

    Article  PubMed  CAS  Google Scholar 

  • Seo J, Kim Y, Kim J (2008) Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses 70:812–814

    Article  PubMed  CAS  Google Scholar 

  • Shao C (2004) Suppression of corneal neovascularization by PEDF release from human amniotic membranes. Invest Ophthalmol Vis Sci 45:1758–1762

    Article  PubMed  Google Scholar 

  • Shimazaki J, Shinozaki N, Tsubota K (1998) Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol 82:235–240

    Article  PubMed  CAS  Google Scholar 

  • Shimmura S, Shimazaki J, Ohashi Y, Tsubota K (2001) Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 20:408–413

    Article  PubMed  CAS  Google Scholar 

  • Shumway J, Al-Malt A, Amon E, Cohlan B, Amini S, Abboud M, Winn H (1999) Impact of oligohydramnios on maternal and perinatal outcomes of spontaneous premature rupture of the membranes at 18–28 weeks. J Matern Fetal Med 8:20–23

    Article  PubMed  CAS  Google Scholar 

  • Sorsby A, Haythorne J, Reed H (1947) Further experience with amniotic membrane grafts in caustic burns of the eye. Br J Ophthalmol 31:409–418

    Article  Google Scholar 

  • Spicer S, Schulte B (1998) Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res 118:1–12

    Article  PubMed  CAS  Google Scholar 

  • Stern M (1913) The grafting of preserved amniotic membranes to burned and ulcerated surfaces, substituting skin grafts. JAMA 60:973

    Article  Google Scholar 

  • Takashima S, Ise H, Zhao P, Akaike T, Nikaido T (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29:73–84

    Article  PubMed  CAS  Google Scholar 

  • Takashima S, Yasuo M, Sanzen N, Sekiguchi K, Okabe M, Yoshida T, Toda A, Nikaido T (2008) Characterization of laminin isoforms in human amnion. Tissue Cell 40:75–81

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280

    PubMed  CAS  Google Scholar 

  • Thadepalli H, Bach V, Davidson E (1978) Antimicrobial effect of amniotic fluid. Obstet Gynecol 52:198–204

    PubMed  CAS  Google Scholar 

  • Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    Article  PubMed  CAS  Google Scholar 

  • Toth P (1992a) Expression of hcg/lh receptor gene and its functional coupling to the regulation of cyclooxygenase-1 and −2 enzymes in human fetal membranes. Placenta 14:A78

    Article  Google Scholar 

  • Toth P (1992b) Direct novel regulation of cyclooxygenase (cox) and prostacyclin synthase (pgi2-s) by hCG in human amnion. Placenta 13:A63

    Google Scholar 

  • Toth P, Li X, Lei Z, Rao C (1996) Expression of human chorionic gonadotropin (hCG)/luteinizing hormone receptors and regulation of the cyclooxygenase-1 gene by exogenous hCG in human fetal membranes. J Clin Endocrinol Metab 81:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Tsai S, Liu Y, Tang W, Zhou Z, Hwang C, Hwang G, Ou B, Hu C, Yang V, Chen J (2007) Characterization of porcine arterial endothelial cells cultured on amniotic membrane, a potential matrix for vascular tissue engineering. Biochem Biophys Res Commun 357:984–990

    Article  PubMed  CAS  Google Scholar 

  • Tseng S, Prabhasawat P, Lee S (1997) Amniotic membrane transplantation for conjunctival surface reconstruction. Am J Ophthalmol 124:765–774

    PubMed  CAS  Google Scholar 

  • Tseng S, Li D, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335

    Article  PubMed  CAS  Google Scholar 

  • Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N (2000) Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res 62:585–590

    Article  PubMed  CAS  Google Scholar 

  • Wang J (2004) The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic β-cell differentiation. Dev Biol 266:178–189

    Article  PubMed  CAS  Google Scholar 

  • Wei J, Zhang T, Kawa S, Aizawa T, Ota M, Akaike T, Kato K, Konishi I, Nikaido T (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 12:545–552

    PubMed  Google Scholar 

  • Weinberg R (1991) Tumor suppressor genes. Science 254:1138–1146

    Article  PubMed  CAS  Google Scholar 

  • Wolf H, Desoye G (1993) Immunohistochemical localization of glucose transporters and insulin receptors in human fetal membranes at term. Histochemistry 100:379–385

    Article  PubMed  CAS  Google Scholar 

  • Wolf H, Schmidt W, Drenckhahn D (1991) Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res 266:385–389

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Shirakata Y, Shudou M, Dai X, Tokumaru S, Hirakawa S, Sayama K, Hamuro J, Hashimoto K (2006) New skin-equivalent model from de-epithelialized amnion membrane. Cell Tissue Res 326:69–77

    Article  PubMed  CAS  Google Scholar 

  • Yeh L, Chen W, Li W, Espana E, Ouyang J, Kawakita T, Kao W, Tseng S, Liu C (2005) Soluble lumican glycoprotein purified from human amniotic membrane promotes corneal epithelial wound healing. Invest Ophthalmol Vis Sci 46:479–486

    Article  Google Scholar 

  • Yu J, Zhang L (2004) Apoptosis in human cancer cells. Curr Opin Oncol 16:19–24

    Article  PubMed  Google Scholar 

  • Yuge I, Takumi Y, Koyabu K, Hashimoto S, Takashima S, Fukuyama T, Nikaido T, Usami S (2004) Transplanted human amniotic epithelial cells express connexin 26 and Na-K-adenosine triphosphatase in the inner ear. Transplantation 77:1452–1454

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Chen J, Feng J (2003) The effects of amniotic membrane on polymorphonuclear cells. Chin Med J 116:788–790

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Mamede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamede, A.C., Carvalho, M.J., Abrantes, A.M. et al. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349, 447–458 (2012). https://doi.org/10.1007/s00441-012-1424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1424-6

Keywords

Navigation