Skip to main content

Advertisement

Log in

Electrical stimulation therapies for spinal fusions: current concepts

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Electrical stimulation therapies have been used for more than 30 years to enhance spinal fusions. Although their positive effects on spinal fusions have been widely reported, the mechanisms of action of the technologies were only recently identified. Three types of technologies are available clinically: direct current, capacitive coupling, and inductive coupling. The latter is the basis of pulsed electromagnetic fields and combined magnetic fields. This review summarizes the current concepts on the mechanisms of action, animal and clinical studies, and cost justification for the use of electrical stimulation for spinal fusions. Scientific studies support the validity of electrical stimulation treatments. The mechanisms of action of each of the three electrical stimulation therapies are different. New data demonstrates that the upregulation of several growth factors may be responsible for the clinical success seen with the use of such technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaron RK, Wang S, Ciombor DM (2002) Upregulation of basal TGFβ1 levels by EMF coincident with chondrogenesis—implications for skeletal repair and tissue engineering. J Orthop Res 20:233–240

    Article  PubMed  CAS  Google Scholar 

  2. Bassett CA, Becker RO (1962) Generation of electric potentials by bone in response to mechanical stress. Science 137:1063–1064

    Article  PubMed  CAS  Google Scholar 

  3. Bassett CA, Pawluk RJ, Becker RO (1964) Effects of electric currents on bone formation in vivo. Nature 204:652–654

    Article  PubMed  CAS  Google Scholar 

  4. Bodamyali T, Bhatt B, Hughes FJ, Winrow VR, Kanczler JM, Simon B, Abbott J, Blake DR, Stevens CR (1998) Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Commun 250:458–461

    Article  PubMed  CAS  Google Scholar 

  5. Bodamyali T, Kanczler JM, Simon B, Blake DR, Stevens CR (1999) Effect of faradic products on direct current-stimulated calvarial organ culture calcium levels. Biochem Biophys Res Commun 264:657–661

    Article  PubMed  CAS  Google Scholar 

  6. Boden SD, Schimandle JH, Hutton WC (1995) An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine 20:412–420

    Article  PubMed  CAS  Google Scholar 

  7. Bose B (2001) Outcomes after posterolateral lumbar fusion with instrumentation in patients treated with adjunctive pulsed electromagnetic field stimulation. Adv Ther 18:12–20

    Article  PubMed  CAS  Google Scholar 

  8. Boyan BD, Simon BJ, Gan JC, MacDougall MJ, Lohmann CH, Schwartz Z (2005) EMF regulates growth factor synthesis by osteoblasts. In: Aaron RK, Bolander ME (eds) Physical regulation of skeletal repair. American Academy of Orthopaedic Surgeons, Rosemont, pp 201–207

    Google Scholar 

  9. Bozic KJ, Glazer PA, Zurakowski D, Simon BJ, Lipson SJ, Hayes WC (1999) In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine 20:2127–2133

    Article  Google Scholar 

  10. Brighton CT, Luessenhop CP, Pollack SR, Steinberg DR, Petrik ME, Kaplan FS (1989) Treatment of castration-induced osteoporosis by a capacitive coupled electrical signal in the rat vertebrae. J Bone Joint Surg Am 71:228–233

    PubMed  CAS  Google Scholar 

  11. Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR (2001) Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 83:1514–1523

    PubMed  Google Scholar 

  12. Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 271:F216–F222

    PubMed  CAS  Google Scholar 

  13. Carter EL, Vresilovic EJ, Pollack SR, Brighton CT (1989) Field distributions in vertebral bodies of the rat during electrical stimulation: a parametric study. IEEE Trans Biomed Eng 36:333–345

    Article  PubMed  Google Scholar 

  14. Carter EL, Pollack SR, Brighton CT (1990) Theoretical determination of the current density distributions in human vertebral bodies during electrical stimulation. IEEE Trans Biomed Eng 37:606–614

    Article  PubMed  Google Scholar 

  15. Cho M, Hunt TK, Hussain MZ (2001) Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol 280:H2357–H2363

    PubMed  CAS  Google Scholar 

  16. Dawson EG (2003) Bone morphogenetic proteins BMPs. Letter. Spine J 3:87–88

    Article  PubMed  Google Scholar 

  17. Dejardin LM, Kahanovitz N, Arnoczky SP, Simon BJ (2001) The effect of varied electrical current densities on lumbar spinal fusion in dogs. Spine J 1:341–347

    Article  PubMed  CAS  Google Scholar 

  18. Di Silvestre M, Savini R (1992) Pulsing electromagnetic fields (PEMFs) in spinal fusion: preliminary clinical results. Chir Organi Mov 77:289–294

    PubMed  CAS  Google Scholar 

  19. Dwyer AF, Yau AC, Jefcoat KW (1974) Use of direct current in spine fusion. J Bone Joint Surg Am 56:442

    Google Scholar 

  20. Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ (1995) IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields. J Bone Miner Res 10:812–819

    Article  PubMed  CAS  Google Scholar 

  21. Fitzsimmons RJ, Ryaby JT, Mohan S, Magee FP, Baylink DJ (1995) Combined magnetic fields increase insulin-like growth factor-II in TE-85 human osteosarcoma bone cell cultures. Endocrinology 136:3100–3106

    Article  PubMed  CAS  Google Scholar 

  22. France JC, Norman TL, Santrock RD, McGrath B, Simon BJ (2001) The efficacy of direct current stimulation for lumbar intertransverse process fusions in an animal model. Spine 26:1002–1008

    Article  PubMed  CAS  Google Scholar 

  23. Fredericks D, Petersen E, Bobst J, Gan J, Simon B, Nepola J (2004) Effects of capacitive coupling electrical stimulation on expression of growth factors in a rabbit posterolateral spine fusion model. North American Spine Society, Chicago

    Google Scholar 

  24. Fredericks DC, Petersen EB, Bobst JA, Gan JC, Simon BJ, Glazer P, Nepola JV (2006) Effects of direct current electrical stimulation on gene expression of osteopromotive factors in a posterolateral spinal fusion model. Spine (in press)

  25. Gan JC, Fredericks DC, Glazer PA (2004) Direct current and capacitive coupling electrical stimulation upregulates osteopromotive factors for spinal fusions. Orthop J Harvard Med School 6:57–59

    Google Scholar 

  26. Geesink RG, Hoefnagels NH, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 81:710–718

    Article  PubMed  CAS  Google Scholar 

  27. Glazer PA, Heilmann MR, Lotz JC, Bradford DS (1997) Use of electromagnetic fields in spinal fusion. A rabbit model. Spine 22:2351–2356

    Article  PubMed  CAS  Google Scholar 

  28. Goodwin CB, Brighton CT, Guyer RD, Johnson JR, Light KI, Yuan HA (1999) A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24:1349–1357

    Article  PubMed  CAS  Google Scholar 

  29. Guerkov HH, Lohmann CH, Liu Y, Dean DD, Simon BJ, Heckman JD, Schwartz Z, Boyan BD (2001) Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin Orthop 384:265–279

    Article  PubMed  Google Scholar 

  30. Guizzardi S, Di Silvestre M, Govoni P, Scandroglio R (1994) Pulsed electromagnetic field stimulation on posterior spinal fusions: a histological study in rats. J Spinal Disord 7:36–40

    Article  PubMed  CAS  Google Scholar 

  31. Ito M, Fay LA, Ito Y, Yuan MR, Edwards WT, Yuan HA (1997) The effect of pulsed electromagnetic fields on instrumented posterolateral spinal fusion and clinical related stress shielding. Spine 20:382–388

    Article  Google Scholar 

  32. Kahanovitz N, Arnoczky SP (1990) The efficacy of direct current electrical stimulation to enhance canine spinal fusions. Clin Orthop 251:295–299

    PubMed  Google Scholar 

  33. Kahanovitz N, Pashos C (1996) The role of implantable direct current electrical stimulation in the critical pathway for lumbar spinal fusion. J Care Manage 6:2–8

    Google Scholar 

  34. Kahanovitz N, Arnoczky SP, Hulse D, Shires PK (1984) The effect of post-operative electromagnetic pulsing on canine posterior spinal fusions. Spine 9:273–279

    Article  PubMed  CAS  Google Scholar 

  35. Kahanovitz N, Arnoczky SP, Nemzek J, Shores A (1994) The effect of electromagnetic pulsing on posterior lumbar spinal fusions in dogs. Spine 19:705–709

    Article  PubMed  CAS  Google Scholar 

  36. Kane WJ (1988) Direct current electrical bone growth stimulation for spinal fusion. Spine 24:363–365

    Article  Google Scholar 

  37. Kawase T, Orikasa M, Suzuki A (1991) Effects of prostaglandin E2 and F on cytoplasmic pH in a clonal osteoblast-like cell line, MOB 3–4. J Cell Physiol 146:141–147

    Article  PubMed  CAS  Google Scholar 

  38. Kucharzyk D (1999) A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high-risk spinal fusion population. Spine 5:465–469

    Article  Google Scholar 

  39. Lane JM (2001) BMPs: why are they not in everyday use? J Bone Joint Surg Am 83(Suppl 1 Pt 2):S161–S163

    PubMed  Google Scholar 

  40. Laursen M, Hoy K, Hansen ES, Gelineck J, Christensen FB, Bunger CE (1999) Recombinant bone morphogenetic protein-7 as an intracorporal bone growth stimulator in unstable thoracolumbar burst fractures in humans: preliminary results. Eur Spine J 8:485–490

    Article  PubMed  CAS  Google Scholar 

  41. Lee K (1989) Clinical investigation of the spinal stem system, open trail phase: pseudarthrosis stratum. American Academy of Orthopaedic Surgeons, Las Vegas

    Google Scholar 

  42. Linovitz RJ, Pathria M, Bernhardt M, Green D, Law MD, McGuire RA, Montesana PX, Rechtine G, Salib RM, Ryaby JT, Faden JS, Ponder R, Muenz LR, Magee FP, Garfin SA (2002) Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study (discussion 1389). Spine 27:1383–1389

    Article  PubMed  Google Scholar 

  43. Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 18:637–646

    Article  PubMed  CAS  Google Scholar 

  44. Lohmann CH, Schwartz Z, Liu Y, Li Z, Simon BJ, Sylvia VL, Dean DD, Bonewald LF, Donahue HJ, Boyan BD (2003) Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res 21:326–334

    Article  PubMed  CAS  Google Scholar 

  45. Lorich DG, Brighton CT, Gupta R, Corsetti JR, Levine SE, Gelb ID, Seldes R, Pollack SR (1998) Biochemical pathway mediating the response of bone cells to capacitive coupling. Clin Orthop 350:246–256

    PubMed  Google Scholar 

  46. Marks RA (2000) Spine fusion for discogenic low back pain: outcomes in patients treated with or without pulsed electromagnetic field stimulation. Adv Ther 17:57–67

    Article  PubMed  CAS  Google Scholar 

  47. McKay B, Sandhu HS (2002) Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 27(16 Suppl 1):S66–S85

    Article  PubMed  Google Scholar 

  48. Meril AJ (1994) Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions. Spine 19:2393–2397

    Article  PubMed  CAS  Google Scholar 

  49. Mooney V (1990) A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 15:708–712

    Article  PubMed  CAS  Google Scholar 

  50. Morone MA, Boden SD, Hair G, Martin GJ, Racine M, Hutton WC (1998) Gene expression during allograft lumbar spine fusion and the effect of bone morphogenetic protein 2. Clin Orthop 351:252–265

    PubMed  Google Scholar 

  51. Nagai M, Ota M (1994) Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic protein-2 and -4. J Dent Res 73:1601–1605

    PubMed  CAS  Google Scholar 

  52. Nepola JV, Fredericks D, Simon B, Abbott J (1996) Effect of exposure time on stimulation of healing in the rabbit tibial osteotomy model by a time varying pulsed electromagnetic field and by combined magnetic fields. Canadian Orthopaedic Research Society, Quebec City

    Google Scholar 

  53. Nerubay J, Margarit B, Bubis JJ, Tadmor A, Katznelson A (1986) Stimulation of bone formation by electrical current on spinal fusion. Spine 11:167–169

    Article  PubMed  CAS  Google Scholar 

  54. Poynton AR, Lane JM (2002) Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 27(16 Suppl 1):S40–S48

    Article  PubMed  Google Scholar 

  55. Reid IR, Civitelli R, Avioli LV, Hruska KA (1988) Parathyroid hormone depresses cytosolic pH and DNA synthesis in osteoblast-like cells. Am J Physiol Endocrinol Metab 255:E9–E15

    CAS  Google Scholar 

  56. Rogozinski A, Rogozinski C (1996) Efficacy of implanted bone growth stimulation in instrumented lumbosacral spinal fusion. Spine 21:2479–2483

    Article  PubMed  CAS  Google Scholar 

  57. Rubinacci A, De Ponti A, Shipley A, Samaja M, Karplus E, Jaffe LF (1996) Bicarbonate dependence of ion current in damaged bone. Calcif Tissue Int 58:423–428

    Article  PubMed  CAS  Google Scholar 

  58. Ryaby J, Fitzsimmons RJ, Khin NA, Culley PL, Magee FP, Weinstein AM, Baylink DJ (1994) The role of insulin-like growth factor II in magnetic field regulation of bone formation. Bioelectrochem Bioenerg 35:87–91

    Article  CAS  Google Scholar 

  59. Simmons JW (1985) Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop 183:127–132

    Google Scholar 

  60. Simmons JW, Hayes MA, Christensen DK, Dwyer AP, Koullsis CS, Kimmich SJ (1989) The effect of postoperative pulsing electromagnetic fields on lumbar fusion: an open trial phase study. North American Spine Society, Quebec

    Google Scholar 

  61. Smith TL, Wong-Gibbons D, Maultsby J (2004) Microcirculatory effects of pulsed electromagnetic fields. J Orthop Res 22:80–84

    Article  PubMed  Google Scholar 

  62. Sugimoto T, Kano J, Fukase M, Fujita T (1992) Second messenger signaling in the regulation of cytosolic pH and DNA synthesis by parathyroid hormone (PTH) and PTH-related peptide in osteoblastic osteosarcoma cells: role of Na+/H+ exchange. J Cell Physiol 152:28–34

    Article  PubMed  CAS  Google Scholar 

  63. Tejano NA, Puno R, Ignacio JMF (1996) The use of implantable direct current stimulation in multilevel spinal fusion without instrumentation. Spine 16:1904–1908

    Article  Google Scholar 

  64. Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, Gan J, Simon B, Hopper RA, Levine JP, Gurtner GC (2004) Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2 (Epub Jun 18). FASEB J 18:1231–1233

    PubMed  CAS  Google Scholar 

  65. Toth JM, Seim HB, Schwardt JD, Humphrey WB, Wallskog JA, Turner AS (2000) Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine 25:2580–2587

    Article  PubMed  CAS  Google Scholar 

  66. Uludag H, D’Augusta D, Palmer R, Timony G, Wozney J (1999) Characterization of rhBMP-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model. J Biomed Mater Res 46:193–202

    Article  PubMed  CAS  Google Scholar 

  67. Weinstein AM, McLeod BR, Smith SD, Liboff AR (1990) Ion resonance tuned electromagnetic fields increase healing rate in ostectomized rabbits. Orthopaedic Research Society, New Orleans

    Google Scholar 

  68. Yasuda I (1953) Fundamental problems in the treatment of fracture. J Kyoto Med Soc 4:395–406

    Google Scholar 

  69. Zhuang H, Wang W, Seldes RM, Tahernia AD, Fan H, Brighton CT (1997) Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Commun 237:225–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. Gan.

Additional information

This review complies with current USA laws inclusive of ethics approval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, J.C., Glazer, P.A. Electrical stimulation therapies for spinal fusions: current concepts. Eur Spine J 15, 1301–1311 (2006). https://doi.org/10.1007/s00586-006-0087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0087-y

Keywords

Navigation