Skip to main content

Advertisement

Log in

Surgery for intramedullary spinal cord tumors: the role of intraoperative (neurophysiological) monitoring

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

In spite of advancements in neuro-imaging and microsurgical techniques, surgery for intramedullary spinal cord tumors (ISCT) remains a challenging task. The rationale for using intraoperative neurophysiological monitoring (IOM) is in keeping with the goal of maximizing tumor resection and minimizing neurological morbidity. For many years, before the advent of motor evoked potentials (MEPs), only somatosensory evoked potentials (SEPs) were monitored. However, SEPs are not aimed to reflect the functional integrity of motor pathways and, nowadays, the combined used of SEPs and MEPs in ISCT surgery is almost mandatory because of the possibility to selectively injury either the somatosensory or the motor pathways. This paper is aimed to review our perspective in the field of IOM during ISCT surgery and to discuss it in the light of other intraoperative neurophysiologic strategies that have recently appeared in the literature with regards to ISCT surgery. Besides standard cortical SEP monitoring after peripheral stimulation, both muscle (mMEPs) and epidural MEPs (D-wave) are monitored after transcranial electrical stimulation (TES). Given the dorsal approach to the spinal cord, SEPs must be monitored continuously during the incision of the dorsal midline. When the surgeon starts to work on the cleavage plane between tumor and spinal cord, attention must be paid to MEPs. During tumor removal, we alternatively monitor D-wave and mMEPs, sustaining the stimulation during the most critical steps of the procedure. D-waves, obtained through a single pulse TES technique, allow a semi-quantitative assessment of the functional integrity of the cortico-spinal tracts and represent the strongest predictor of motor outcome. Whenever evoked potentials deteriorate, temporarily stop surgery, warm saline irrigation and improved blood perfusion have proved useful for promoting recovery, Most of intraoperative neurophysiological derangements are reversible and therefore IOM is able to prevent more than merely predict neurological injury. In our opinion combining mMEPs and D-wave monitoring, when available, is the gold standard for ISCT surgery because it supports a more aggressive surgery in the attempt to achieve a complete tumor removal. If quantitative (threshold or waveform dependent) mMEPs criteria only are used to stop surgery, this likely impacts unfavorably on the rate of tumor removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boyd SG, Rothwell JC, Cowan JMA, Webb PJ, Morley T, Asselman P, Marsden CD (1986) A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatr 49:251–257

    PubMed  CAS  Google Scholar 

  2. Brotchi J (2002) Intrinsic spinal cord tumor resection. Neurosurgery 50:1059–1063

    Article  PubMed  Google Scholar 

  3. Burke D, Hicks RG, Stephen JPH (1990) Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. J Physiol (Lond) 425:283–299

    CAS  Google Scholar 

  4. Calancie B, Harris W, Brindle GF, Green BA, Landy HJ (2001) Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. J Neurosurg (Spine 1) 95:161–168

    CAS  Google Scholar 

  5. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA (1998) Threshold-level multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg 88:457–470

    PubMed  CAS  Google Scholar 

  6. Constantini S, Miller DC, Allen JC, Rorke LB, Freed D, Epstein FJ (2000) Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg (Spine) 93:183–193

    CAS  Google Scholar 

  7. Deletis V (2002) Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils J (eds) Neurophysiology in neurosurgery: a modern intraoperative approach. Academic, San Diego, pp 25–51

    Google Scholar 

  8. Deletis V (2000) Neuromonitoring. In: McLone DG (ed) Pediatric neurosurgery: surgery of the developing nervous system. Saunders, Philadelphia, pp 1204–1213

    Google Scholar 

  9. Deletis V, Kothbauer K (1998) Intraoperative neurophysiology of the corticospinal tract. In: Stålberg E, Sharma HS, Olsson Y (eds) Spinal cord monitoring. Springer, Vienna, pp 421–444

    Google Scholar 

  10. Edmonds HL, Paloheimo MPJ, Backman MH, Johnson JR, Holt RT, Shields CB (1989) Transcranial magnetic motor evoked potentials (tcMMEP) for functional monitoring of motor pathways during scoliosis surgery. Spine 14:683–686

    Article  PubMed  Google Scholar 

  11. Elsberg CA, Beer E (1911) The operability of intramedullary tumors of the spinal cord. A report of two operations with remarks upon the extrusion of intraspinal tumors. Am J Med Sci 142:636–647

    Article  Google Scholar 

  12. Epstein FJ, Farmer J-P, Freed D (1993) Adult intramedullary spinal cord ependymoma: the result of surgery in 38 patients. J Neurosurg 79:204–209

    PubMed  CAS  Google Scholar 

  13. Fennelly ME, Taylor BA, Hetreed M (1993) Anaesthesia and the motor evoked potential. In: Jones SJ, Boyd S, Hetreed M, Smith NJ (eds) Handbook of spinal cord monitoring. Proceedings of the fifth international symposium on spinal cord monitoring, London, UK, June 2–5, 1992. Kluwer, Dordrecht, pp 272–276

    Google Scholar 

  14. Fischer G, Brotchi J, Mahla K (2005) Surgical management of intramedullary spinal cord tumors in adults. In: Schmidek H, Roberts D (eds) Schmidek and sweet operative neurosurgical techniques: indications, methods, and results. Saunders Elsevier, Philadelphia, pp 1945–1954

    Google Scholar 

  15. Ginsburg HH, Shetter AG, Raudzens PA (1985) Postoperative paraplegia with preserved intraoperative somatosensory evoked potentials. J Neurosurg 63:296–300

    PubMed  CAS  Google Scholar 

  16. Guidetti B, Mercuri S, Vagnozzi R (1981) Long-term results of the surgical treatment of 129 intramedullary spinal gliomas. J Neurosurg 54:323–330

    PubMed  CAS  Google Scholar 

  17. Hanbali F, Fourney DR, Marmor E, Suki D, Rhines LD, Weinberg JS, McCutcheon IE, Suk I, Gokaslan ZL (2002) Spinal cord ependymoma: radical surgical resection and outcome. Neurosurgery 51:1162–1174

    Article  PubMed  Google Scholar 

  18. Jellinek D, Jewkes D, Symon L (1991) Noninvasive intraoperative monitoring of motor evoked potentials under propofol anesthesia: effect of spinal surgery on the amplitude and latency of motor evoked potentials. Neurosurgery 29:551–557

    Article  PubMed  CAS  Google Scholar 

  19. Jones SJ, Buonamassa S, Crockard HA (2003) Two cases of quadriparesis following anterior cervical discectomy, with normal perioperative somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 74:273–276

    Article  PubMed  CAS  Google Scholar 

  20. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA (1996) Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol 100:375–383

    PubMed  CAS  Google Scholar 

  21. Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG (1992) Effects of propofol, etomidate, midazolam and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthsiology 76:502–509

    Article  CAS  Google Scholar 

  22. Katayama Y, Tsubokawa T, Maemjima S, Hirayama T, Yamamoto T (1988) Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anesthesia. J Neurol Neurosurg Psychiatr 51:50–59

    PubMed  CAS  Google Scholar 

  23. Kearse LA Jr, Lopez-Bresnahan M, McPeck K, Tambe V (1993) Loss of somatosensory evoked potentials during intramedullary spinal cord surgery predicts postoperative neurologic deficits in motor function [corrected] [published erratum appears in J Clin Anesth 1993 Nov-Dec; 5(6):529]. J Clin Anesth 5:392–398

    Article  PubMed  Google Scholar 

  24. Kothbauer K, Deletis V, Epstein FJ (1997) Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg 26:247–254

    Article  PubMed  CAS  Google Scholar 

  25. Kothbauer K, Deletis V, Epstein FJ (2000) Intraoperative neurophysiological monitoring. In: Crockard A, Hayward R, Hoff JT (eds) Neurosurgery: the scientific basis of clinical practice, 3rd edn. Blackwell, Oxford, p 1042

    Google Scholar 

  26. Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4:Article 1

  27. Krzan M, Deletis V, Isgum V (1996) Intraoperative neurophysiological mapping of dorsal columns. A new tool in the prevention of surgically induced sensory deficit? Electroencephalogr Clin Neurophysiol 102:37P [Abstract]

    Google Scholar 

  28. Lesser RP, Raudzens P, Lüders H, Nuwer MR, Goldie WD, Morris HH, Dinner DS, Klem G, Hahn JF, Shetter AG, Ginsburg HH, Gurd AR (1986) Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19:22–25

    Article  PubMed  CAS  Google Scholar 

  29. Levy WJ, York DH, McCaffrey M, Tanzer F (1984) Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery 15:287–302

    Article  PubMed  CAS  Google Scholar 

  30. McCormick PC, Torres R, Post KD, Stein BM (1990) Intramedullary ependymoma of the spinal cord. J Neurosurg 72:523–532

    PubMed  CAS  Google Scholar 

  31. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    Article  PubMed  CAS  Google Scholar 

  32. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41:1327–1336

    Article  PubMed  CAS  Google Scholar 

  33. Nadkarni TD, Rekate HL (1999) Pediatric intramedullary spinal cord tumors: critical review of the literature. Childs Nerv Syst 15:17–28

    Article  PubMed  CAS  Google Scholar 

  34. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter study. Electroencephalogr Clin Neurophysiol 96:6–11

    Article  PubMed  CAS  Google Scholar 

  35. Owen JH (1999) The application of intraoperative monitoring during surgery for spinal deformity. Spine 24:2649–2662

    Article  PubMed  CAS  Google Scholar 

  36. Patton HD, Amassian VE (1954) Single-and multiple unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17:345–363

    PubMed  CAS  Google Scholar 

  37. Pechstein U, Cedzich C, Nadstawek J, Schramm J (1996) Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 39:335–344

    Article  PubMed  CAS  Google Scholar 

  38. Pelosi L, Lamb J, Grevitt M, Mehdian S, Webb J, Blumhardt L (2002) Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 113:1082–1091

    Article  PubMed  Google Scholar 

  39. Philips CG, Porter R (1964) The pyramidal projection to motoneurones of some muscle groups of the baboon’s forelimb. In: Eccles JC, Schadé JP (eds) Progress in brain research. Elsevier, Amsterdam, pp 222–243

    Google Scholar 

  40. Polo A, Tercedor A, Paniagua-Soto J, Acosta F, Canadas A (2000) Neurophysiological monitoring during scoliosis surgery using control hypotension. Rev Esp Anestesiol Reanim 47:367–370

    PubMed  CAS  Google Scholar 

  41. Quinones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, McDermott MW, Weinstein PR (2005) Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery 56:982–993

    Article  PubMed  Google Scholar 

  42. Raco A, Esposito V, Lenzi J, Piccirilli M, Delfini R, Cantore G (2005) Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery 56:972–981

    PubMed  Google Scholar 

  43. Sala F, Lanteri P, Bricolo A (2004) Motor evoked potential monitoring for spinal cord and brain stem surgery. Adv Tech Stand Neurosurg 29:133–169

    PubMed  CAS  Google Scholar 

  44. Sala F, Niimi Y, Berenstein A, Deletis V (2001) Neuroprotective role of neurophysiological monitoring during endovascular procedures in the spinal cord. Ann NY Ac Sci 939:126–136

    Article  CAS  Google Scholar 

  45. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58:1129–1143

    Article  PubMed  Google Scholar 

  46. Skinner S, Nagib M, Bergman T, Maxwell R, Msangi G (2005) The initial use of free-running electromyography to detect early motor tract injury during resection of intramedullary spinal cord lesions. Neurosurgery 56:299–314

    Article  PubMed  Google Scholar 

  47. Sloan TB (2002) Intraoperative neurophysiology and anesthesia management. In: Deletis V, Shils J (eds) Neurophysiology in neurosurgery: a modern intraoperative approach. Academic, San Diego, pp 451–474

    Google Scholar 

  48. Taniguchi M, Nadstawek J, Langenbach U, Bremer F, Schramm J (1993) Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery 33:407–415

    Article  PubMed  CAS  Google Scholar 

  49. Taniguchi M, Schramm J, Cedzich C (1991) Recording of myogenic motor evoked potentials under general anesthesia. In: Schramm J, Møller ÅR (eds) Intraoperative neurophysiologic monitoring in neurosurgery. Springer, Berlin, pp 72–87

    Google Scholar 

  50. Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D (2002) The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg 96:255–262

    Article  PubMed  Google Scholar 

  51. Wood E, Berne A, Taveras J (1954) The value of radiation therapy in the management of intrinsic tumors of the spinal cord. Radiology 63:11–24

    PubMed  CAS  Google Scholar 

  52. Xu Q, Bao W, Mao R, Yang G (1996) Aggressive surgery for intramedullary tumor of cervical spinal cord. Surg Neurol 46:322–328

    Article  PubMed  CAS  Google Scholar 

  53. Young W, Koreh I (1986) Potassium and calcium changes in injured spinal cords. Brain Res 365:42–53

    Article  PubMed  CAS  Google Scholar 

  54. Young W, Rosenbluth J, Wojak JC, Sakatani K, Kim H (1989) Extracellular potassium activity and axonal conduction in spinal cord of the myelin-deficient mutant rat. Exp Neurol 106:41–51

    Article  PubMed  CAS  Google Scholar 

  55. Zentner J, Kiss I, Ebner A (1989) Influence of anesthetics-nitrous oxide in particular-on electromyographic response evoked by transcranial electrical stimulation of the cortex. Neurosurgery 24:253–256

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement None of the authors has any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sala, F., Bricolo, A., Faccioli, F. et al. Surgery for intramedullary spinal cord tumors: the role of intraoperative (neurophysiological) monitoring. Eur Spine J 16 (Suppl 2), 130–139 (2007). https://doi.org/10.1007/s00586-007-0423-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0423-x

Keywords

Navigation