Skip to main content
Log in

Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ® L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISOinitial = 2.7 ± 0.3 mg/million cycles. During the ASTM test period (10–15 million cycles) a gravimetric wear rate of 0.14 ± 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial disc is loaded with a linear wear path.Testing according to ASTM F2423-05 with pure unidirectional motion does not reflect the kinematics of TDA patients‘ daily activities. Based on our findings it seems to be more reliable to predict the clinical wear behavior of an artificial disc replacement using the ISO/FDIS 18192-1 method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In the current final version of the ISO 18192-1:2008(E) the second peak for full extension has been changed to 2,000 N.

References

  1. Affatato S, Fernandes B, Tucci A, Esposito L, Toni A (2001) Isolation and morphological characterisation of UHMWPE wear debris generated in vitro. Biomaterials 22:2325–2331. doi:10.1016/S0142-9612(00)00403-8

    Article  PubMed  CAS  Google Scholar 

  2. Algan SM, Purdon M, Horowitz SM (1996) Role of tumor necrosis factor alpha in particulate-induced bone resorption. J Orthop Res 14(1):30–35. doi:10.1002/jor.1100140107

    Article  PubMed  CAS  Google Scholar 

  3. Anderson PA, Rouleau JP, Bryan VE, Carlson CS (2003) Wear analysis of the Bryan cervical disc prosthesis. Spine 28(20S):186–194. doi:10.1097/01.BRS.0000092212.42388.79

    Article  Google Scholar 

  4. Bertagnoli R, Kumar S (2002) Indications for full prosthetic disc arthroplasty: a correlation of clinical outcome against a variety of indications. Eur Spine J 11(Suppl. 2):131–136

    Google Scholar 

  5. Blumenthal S, McAfee PC, Guyer RD, Hochschuler SH, Geisler FH, Holt RT, Garcia R, Regan JJ, Ohnmeiss DD (2005) A prospective, randomized, multicenter food and drug administration investigational device exemptions study of lumbar total disc replacement with the Charité artificial disc versus lumbar fusion. Spine 30(14):1565–1575. doi:10.1097/01.brs.0000170587.32676.0e

    Article  PubMed  Google Scholar 

  6. Bragdon CR, O’Connor DO, Löwenstein JS, Jasty M, Syniuta WD (1996) The importance of multidirectional motion on the wear of polyethylene. Proc Instn Mech Engrs Part H 210:157–165. doi:10.1243/PIME_PROC_1996_210_408_02

    Article  CAS  Google Scholar 

  7. Clohisy D (2003) Cellular mechanics of osteolysis. J Bone Joint Surg Am 80A(Suppl. 1):4–6

    Google Scholar 

  8. Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC (2003) Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine 28(20S):110–117. doi:10.1097/01.BRS.0000092209.27573.90

    Article  Google Scholar 

  9. Cunningham BW, Hallab NJ, Polly DW, Gaines R, Lubicky J, McAfee PC (2003) Basic science summary statement. Spine 28(20S):195. doi:10.1097/01.BRS.0000092213.71109.2C

    Article  Google Scholar 

  10. Cunningham BW, Dmitriev AE, Hu N, McAfee PC (2003) General principles of total disc replacement arthroplasty—seventeen cases in a nonhuman primate model. Spine 28(20S):118–124. doi:10.1097/00007632-200310151-00005

    Article  Google Scholar 

  11. Cunningham BW (2004) Basic scientific considerations in total disc arthroplasty. Spine J 4(Suppl):219–230. doi:10.1016/j.spinee.2004.07.015

    Article  Google Scholar 

  12. Cunningham BW, Hu N, Hallab NJ, McAfee PC (2007) Epidural application of particulate wear debris: a comprehensive analysis of ten different implant materials using an in vivo animal model. Global symposium on motion preservation technology 7th Annual Meeting 1–4 May Berlin, Abstract PA-WE-10, 2007

  13. David T (2005) Revision of a Charité artificial disc 9.5 years in vivo to a new Charité artificial disc: case report and explant analysis. Eur Spine J 14:507–511. doi:10.1007/s00586-004-0842-x

    Article  PubMed  Google Scholar 

  14. David T (2007) Long-term results of one-level lumbar arthroplasty: minimum 10-year follow-up of the Charité artificial disc in 106 patients. Spine 32(6):661–666. doi:10.1097/01.brs.0000257554.67505.45

    Article  PubMed  Google Scholar 

  15. Goodman SB, Knoblich G, Song T, Hule P, Regia D, Aspenberg P, Lindgren LL (1995) Tissue ingrowth and differentiation in the bone harvest chamber in the presence of polyethylene particles. J Bone Joint Surg Am 77A:1025–1035

    Google Scholar 

  16. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E (1998) Polyethylene particles of a `critical size` are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19:2297–2302. doi:10.1016/S0142-9612(98)00140-9

    Article  PubMed  CAS  Google Scholar 

  17. Hallab N, Link HD, McAfee PC (2003) Biomaterial optimization in total disc arthroplasty. Spine 28(20S):139–152. doi:10.1097/01.BRS.0000092214.87225.80

    Article  Google Scholar 

  18. Hallab NJ, Cunningham BW, Jacobs JJ (2003) Spinal implant debris-induced osteolysis. Spine 28(20S):125–138. doi:10.1097/00007632-200310151-00006

    Article  Google Scholar 

  19. Hochschuler SH, Ohnmeiss DD, Guyer RD, Blumenthal SL (2002) Artificial disc: preliminary results of a prospective study in the United States. Eur Spine J 11(Suppl. 2):106–110

    Google Scholar 

  20. Ingham E, Fisher J (2000) Biological reactions to wear debris in total joint replacement. Proc Instn Mech Engrs vol. 214 Part H, pp 21–37

  21. Kang L, Galvin AL, Brown TD, Jin Z, Fisher J (2008) Quantification of the effect of cross-shear on the wear of conventional and highly cross-linked UHMWPE. J Biomech 41(2):340–346. doi:10.1016/j.jbiomech.2007.09.005

    Article  PubMed  Google Scholar 

  22. Kurtz S, van Ooij A, Peloza J, Villarrag M (2005) Standardized wear testing for total disc replacements: perspectives from retrieval analysis. ASTM symposium on wear of articulating surfaces, Committee F04, Hyatt Regency Dallas, Texas

  23. Kurtz SM, von Ooij A, Ross ER, de Waal Malefijt J, Ciccarelli L, Villarraga ML (2007) Polyethylene wear and rim fracture in total disc arthroplasty. Spine J 7(1):12–21. doi:10.1016/j.spinee.2006.05.012

    Article  PubMed  Google Scholar 

  24. Kurtz SM, MacDonald D, Ciccarelli L, van Ooij A, Isaza J, Ross R, Bowden A, Patwardhan A (2007) Are one-sided wear patterns predictive of greater clinical wear in mobile bearing TDR’s. global symposium on motion preservation technology 7th annual meeting 1–4 May Berlin, Abstract PA-WE-09

  25. Lemaire JP, Skalli W, Lavaste F, Templier A, Mendes F, Diop A, Sauty V, Laloux E (1997) Intervertebral disc prosthesis: results and prospects for the year 2000. Clin Orthop Relat Res (337):64–76. doi:10.1097/00003086-199704000-00009

  26. Marnay T (2002) Lumbar disc replacement: 7 to 11-year results with ProDisc: proceedings of the NASS 17th annual meeting. Spine J 2:94. doi:10.1016/S1529-9430(02)00362-5

    Article  Google Scholar 

  27. Mayer HM, Wiechert K, Korge A, Qose I (2002) Minimally invasive total disc replacement: surgical technique and preliminary clinical results. Eur Spine J 11(Suppl. 2):124–130

    Google Scholar 

  28. Mayer HM, Korge A (2002) Non-fusion technology in degenerative lumbar spinal disorders: facts, questions, challenges. Eur Spine J 11(Suppl. 2):85–91

    Google Scholar 

  29. McAfee PC, Fedder IL, Saiedy S, Shucosky EM, Cunningham BW (2003) Experimental design of total disc replacement—experience with a prospective randomized study of the SB Charité. Spine 28(20S):153–162. doi:10.1097/01.BRS.0000092217.34981.E1

    Article  Google Scholar 

  30. Moore RJ, Fraser RD, Vernon-Roberts B, Finnie JW, Blumbergs PC, Haynes DR, Hutchens MJ, Walters RM, Kamat AS, Koszyca B (2002) The biologic response to particles from a lumbar disc prosthesis. Spine 27(19):2088–2094. doi:10.1097/00007632-200210010-00003

    Article  PubMed  Google Scholar 

  31. Murray DW, Rushton N (1990) Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg Br 72B:988–992

    Google Scholar 

  32. Nechtow W, Hintner M, Bushelow M, Kaddick C (2006) Intervertebral disc replacement mechanical performance depends strongly on input parameters. 52nd Orthopaedic Research Society Chicago Abstract 0118

  33. Nechtow W, Long W, Dana C, Bushelow M, Ochs A, Hintner M, Kaddick C (2008) Vertebral motion segment dynamics influence Prodisc-L wear performance. 54th Orthopaedic Research Society San Francisco poster no. 1928

  34. Niedzwiecki S, Klapperich C, Short J, Jani S, Ries M, Pruitt L (2001) Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzymatic cleavage. J Biomed Mater Res 56:245–249. doi:10.1002/1097-4636(200108)56:2<245::AID-JBM1091>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  35. van Ooij A, Kurtz SM, Stessels F, Noten H, van Rhijn L (2007) Polyethylene wear debris and long-term clinical failure of the Charité disc prosthesis. Spine 32(2):223–229. doi:10.1097/01.brs.0000251370.56327.c6

    Article  PubMed  Google Scholar 

  36. Pare P, Chan F, Buchholz P, Kurtz S (2005) McCombe P Is unidirectional wear testing clinical relevant for artificial disc implants? ASTM symposium on wear of articulating surfaces, committee F04. Hyatt Regency Dallas, Texas

    Google Scholar 

  37. Revell PA, Al-Saffar N, Kobayashi A (1997) Biological reaction to debris in relation to joint prostheses. Proc Instn Mech Engrs 211 Part H, 187–197

  38. Saikko V, Calonius O (2002) Slide track analysis of the relative motion between femoral head and acetabular cup in walking and in hip simulators. J Biomech 35:455–464. doi:10.1016/S0021-9290(01)00224-X

    Article  PubMed  Google Scholar 

  39. Saikko V, Calonius O (2003) An improved method of computing the wear factor for total hip prostheses involving the variation of relative motion and contact pressure with location on the bearing surface. J Biomech 36:1819–1827. doi:10.1016/S0021-9290(03)00228-8

    Article  PubMed  Google Scholar 

  40. Santavirta S, Holkka V, Eskola A, Kontinen YT, Paavilainen T, Tallroth K (1990) Aggressive granulomatous lesions in cementless total hip arthroplasty. J Bone Joint Surg Br 72B:980–985

    Google Scholar 

  41. Serhan HA, Dooris AP, Parsons ML, Ares PJ, Gabriel SM (2006) In vitro wear assessment of the Charité artificial disc according to ASTM recommendations. Spine 31(17):1900–1910. doi:10.1097/01.brs.0000228716.60863.ab

    Article  PubMed  Google Scholar 

  42. Siepe CJ, Mayer HM, Wiechert K, Korge A (2006) Clinical results of total lumbar disc replacement with ProDisc II. Spine 31(17):1923–1932. doi:10.1097/01.brs.0000228780.06569.e8

    Article  PubMed  Google Scholar 

  43. Szpalski M, Gunzburg R, Mayer M (2002) Spine arthroplasty: a historical review. Eur Spine J 11(Suppl. 2):65–84

    Google Scholar 

  44. Tropiano P, Huang RC, Girardi FP, Cammisa FP, Marnay T (2005) Lumbar total disc replacement—seven to eleven-year follow-up. J Bone Joint Surg Am 87A(3):490–496. doi:10.2106/JBJS.C.01345

    Article  Google Scholar 

  45. Wang A, Stark C, Dumbleton JH (1996) Mechanistic and morphological origins of ultra-high molecular weight polyethylene wear debris in total joint replacement prostheses. Proc Inst Mech Engrs Part H 210:141–155. doi:10.1243/PIME_PROC_1996_210_407_02

    Article  CAS  Google Scholar 

  46. Wang A, Essner A, Polineni VK, Stark C, Dumbleton JH (1998) Lubrication and wear of ultrahigh molecular weight polyethylene in total joint replacements. Tribol Int 31(1–3):17–33. doi:10.1016/S0301-679X(98)00005-X

    Article  CAS  Google Scholar 

  47. Wang A (2001) A unified theory of wear for ultra-high molecular weight polyethylene in multi-directional sliding. Wear 248:38–47. doi:10.1016/S0043-1648(00)00522-6

    Article  CAS  Google Scholar 

  48. Wilke HJ, Wenger K, Claes LE (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro testing of spinal implants. Eur Spine J 7:148–154. doi:10.1007/s005860050045

    Article  PubMed  CAS  Google Scholar 

  49. Zeegers WS, Bohnen LMLJ, Laaper M, Verhaegen MJA (1999) Artificial disc replacement with the modular type SB Charité III: 2-year results in 50 prospectively studied patients. Eur Spine J 8:210–217. doi:10.1007/s005860050160

    Article  PubMed  CAS  Google Scholar 

  50. Zigler JE (2003) Clinical results with ProDisc: European experience and US investigation device exemption study. Spine 28(20S):163–166. doi:10.1097/00007632-200310151-00009

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christoph Schilling, M.Sc. for the performance of the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Grupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grupp, T.M., Yue, J.J., Garcia, R. et al. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation. Eur Spine J 18, 98–108 (2009). https://doi.org/10.1007/s00586-008-0840-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0840-5

Keywords

Navigation