Skip to main content

Advertisement

Log in

An update on bone substitutes for spinal fusion

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

With the current advances in spinal surgery, an understanding of the precise biological mechanism of each bone substitute is necessary for inducing successful spinal fusion. In this review, the categories of bone substitutes include allografts, ceramics, demineralized bone matrix, osteoinductive factors, autogenous platelet concentrate, mesenchymal stem cells, and gene therapy. Further, clinical studies have been evaluated by their levels of evidence in order to elucidate the precise effect of the bone substitute employed and to establish clinical guidance. This article will review both clinical studies based on evidence and basic research in current advances in order to avoid as far as possible any chances of failure in the future and to understand cellular biology in novel technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 84-A:716–720

    PubMed  Google Scholar 

  2. Alden TD, Pittman DD, Beres EJ, Hankins GR, Kallmes DF, Wisotsky BM, Kerns KM, Helm GA (1999) Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg 90:109–114

    Article  PubMed  CAS  Google Scholar 

  3. An HS, Lynch K, Toth J (1995) Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 8:131–135. doi:10.1097/00002517-199504000-00007

    Article  PubMed  CAS  Google Scholar 

  4. An HS, Simpson JM, Glover JM, Stephany J (1995) Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 20:2211–2216

    PubMed  CAS  Google Scholar 

  5. Aurori BF, Weierman RJ, Lowell HA, Nadel CI, Parsons JR (1985) Pseudarthrosis after spinal fusion for scoliosis. A comparison of autogeneic and allogeneic bone grafts. Clin Orthop Relat Res 199:153–158

    PubMed  Google Scholar 

  6. Baramki HG, Steffen T, Lander P, Chang M, Marchesi D (2000) The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. Spine 25:1053–1060. doi:10.1097/00007632-200005010-00003

    Article  PubMed  CAS  Google Scholar 

  7. Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA (2003) A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine 28:1219–1224. doi:10.1097/00007632-200306150-00003

    Article  PubMed  Google Scholar 

  8. Bishop RC, Moore KA, Hadley MN (1996) Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg 85:206–210

    PubMed  CAS  Google Scholar 

  9. Blattert TR, Delling G, Dalal PS, Toth CA, Balling H, Weckbach A (2002) Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 27:2697–2705. doi:10.1097/00007632-200212010-00009

    Article  PubMed  Google Scholar 

  10. Boden SD, Kang J, Sandhu H, Heller JG (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial. Spine 27:2662–2673. doi:10.1097/00007632-200212010-00005

    Article  PubMed  Google Scholar 

  11. Boden SD, Martin GJ Jr, Horton WC, Truss TL, Sandhu HS (1998) Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 11:95–101. doi:10.1097/00002517-199804000-00001

    Article  PubMed  CAS  Google Scholar 

  12. Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Moskovitz PA (1999) Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 24:1179–1185. doi:10.1097/00007632-199906150-00002

    Article  PubMed  CAS  Google Scholar 

  13. Boden SD, Titus L, Hair G, Liu Y, Viggeswarapu M, Nanes MS, Baranowski C (1998) Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 23:2486–2492. doi:10.1097/00007632-199812010-00003

    Article  PubMed  CAS  Google Scholar 

  14. Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25:376–381. doi:10.1097/00007632-200002010-00020

    Article  PubMed  CAS  Google Scholar 

  15. Bomback DA, Grauer JN, Lugo R, Troiano N, Patel TC, Friedlaender GE (2004) Comparison of posterolateral lumbar fusion rates of Grafton Putty and OP-1 Putty in an athymic rat model. Spine 29:1612–1617. doi:10.1097/01.BRS.0000132512.53305.A1

    Article  PubMed  Google Scholar 

  16. Bridwell KH, Sedgewick TA, O’Brien MF, Lenke LG, Baldus C (1993) The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. J Spinal Disord 6:461–472

    Article  PubMed  CAS  Google Scholar 

  17. Brown MD, Malinin TI, Davis PB (1976) A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical spine fusions. Clin Orthop Relat Res 119:231–236

    PubMed  Google Scholar 

  18. Burkus JK, Dorchak JD, Sanders DL (2003) Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine 28:372–377. doi:10.1097/00007632-200302150-00012

    Article  PubMed  Google Scholar 

  19. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349

    PubMed  Google Scholar 

  20. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27:2396–2408. doi:10.1097/00007632-200211010-00015

    Article  PubMed  Google Scholar 

  21. Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, Sassard WR, Stubbs H, Block JE (2004) Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 29:660–666. doi:10.1097/01.BRS.0000116588.17129.B9

    Article  PubMed  Google Scholar 

  22. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264. doi:10.1016/S1471-4914(01)02016-0

    Article  PubMed  CAS  Google Scholar 

  23. Carreon LY, Glassman SD, Anekstein Y, Puno RM (2005) Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine 30:E243–E246. doi:10.1097/01.brs.0000160846.85397.44

    Article  PubMed  Google Scholar 

  24. Cha CW, Boden SD (2003) Gene therapy applications for spine fusion. Spine 28:S74–S84. doi:10.1097/00007632-200308011-00013

    Article  PubMed  Google Scholar 

  25. Chen WJ, Tsai TT, Chen LH, Niu CC, Lai PL, Fu TS, McCarthy K (2005) The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine 30:2293–2297. doi:10.1097/01.brs.0000182087.35335.05

    Article  PubMed  Google Scholar 

  26. Chen Y, Luk KD, Cheung KM, Xu R, Lin MC, Lu WW, Leong JC, Kung HF (2003) Gene therapy for new bone formation using adeno-associated viral bone morphogenetic protein-2 vectors. Gene Ther 10:1345–1353. doi:10.1038/sj.gt.3301999

    Article  PubMed  CAS  Google Scholar 

  27. Choi Y, Oldenburg FP, Sage L, Johnstone B, Yoo JU (2007) A bridging demineralized bone implant facilitates posterolateral lumbar fusion in New Zealand white rabbits. Spine 32:36–41. doi:10.1097/01.brs.0000250982.41666.55

    Article  PubMed  Google Scholar 

  28. Dimar JR, Glassman SD, Burkus KJ, Carreon LY (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 31:2534–2539. doi:10.1097/01.brs.0000240715.78657.81

    Article  PubMed  Google Scholar 

  29. Dodd CA, Fergusson CM, Freedman L, Houghton GR, Thomas D (1988) Allograft versus autograft bone in scoliosis surgery. J Bone Joint Surg Br 70:431–434

    PubMed  CAS  Google Scholar 

  30. Dumont RJ, Dayoub H, Li JZ, Dumont AS, Kallmes DF, Hankins GR, Helm GA (2002) Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents. Neurosurgery 51:1239–1244. doi:10.1097/00006123-200211000-00020

    Article  PubMed  Google Scholar 

  31. Epstein NE (2006) A preliminary study of the efficacy of beta tricalcium phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech 19:424–429. doi:10.1097/00024720-200608000-00009

    Article  PubMed  Google Scholar 

  32. Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen IS, Lieberman JR (2006) In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res 24:1709–1721. doi:10.1002/jor.20229

    Article  PubMed  CAS  Google Scholar 

  33. Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32. doi:10.1210/er.13.1.18

    PubMed  CAS  Google Scholar 

  34. Fisher CG, Wood KB (2007) Introduction to and techniques of evidence-based medicine. Spine 32:S66–S72. doi:10.1097/BRS.0b013e318145308d

    Article  PubMed  Google Scholar 

  35. Flatley TJ, Lynch KL, Benson M (1983) Tissue response to implants of calcium phosphate ceramic in the rabbit spine. Clin Orthop Relat Res 179:246–252. doi:10.1097/00003086-198310000-00038

    Article  PubMed  Google Scholar 

  36. Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29:3973–3982. doi:10.1016/j.biomaterials.2008.06.026

    Article  PubMed  CAS  Google Scholar 

  37. Girardi FP, Cammisa FP Jr (2003) The effect of bone graft extenders to enhance the performance of iliac crest bone grafts in instrumented lumbar spine fusion. Orthopedics 26:s545–s548

    PubMed  Google Scholar 

  38. Grauer JN, Patel TC, Erulkar JS, Troiano NW, Panjabi MM, Friedlaender GE (2001) Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 26:127–133. doi:10.1097/00007632-200101150-00004

    Article  PubMed  CAS  Google Scholar 

  39. Hadjipavlou AG, Simmons JW, Tzermiadianos MN, Katonis PG, Simmons DJ (2001) Plaster of Paris as bone substitute in spinal surgery. Eur Spine J 10(Suppl 2):S189–S196. doi:10.1007/s005860100329

    PubMed  Google Scholar 

  40. Hee HT, Majd ME, Holt RT, Myers L (2003) Do autologous growth factors enhance transforaminal lumbar interbody fusion? Eur Spine J 12:400–407. doi:10.1007/s00586-003-0548-5

    Article  PubMed  Google Scholar 

  41. Heise U, Osborn JF, Duwe F (1990) Hydroxyapatite ceramic as a bone substitute. Int Orthop 14:329–338. doi:10.1007/BF00178768

    Article  PubMed  CAS  Google Scholar 

  42. Helm GA, Alden TD, Beres EJ, Hudson SB, Das S, Engh JA, Pittman DD, Kerns KM, Kallmes DF (2000) Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 92:191–196

    PubMed  CAS  Google Scholar 

  43. Hidaka C, Goshi K, Rawlins B, Boachie-Adjei O, Crystal RG (2003) Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Spine 28:2049–2057. doi:10.1097/01.BRS.0000091661.11228.C3

    Article  PubMed  Google Scholar 

  44. Hile DD, Kandziora F, Lewandrowski KU, Doherty SA, Kowaleski MP, Trantolo DJ (2006) A poly (propylene glycol-co-fumaric acid) based bone graft extender for lumbar spinal fusion: in vivo assessment in a rabbit model. Eur Spine J 15:936–943. doi:10.1007/s00586-005-1001-8

    Article  PubMed  Google Scholar 

  45. Jackson KA, Mi T, Goodell MA (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 96:14482–14486. doi:10.1073/pnas.96.25.14482

    Article  PubMed  CAS  Google Scholar 

  46. Jenis LG, Wheeler D, Parazin SJ, Connolly RJ (2002) The effect of osteogenic protein-1 in instrumented and noninstrumented posterolateral fusion in rabbits. Spine J 2:173–178. doi:10.1016/S1529-9430(02)00183-3

    Article  PubMed  Google Scholar 

  47. Johnsson R, Stromqvist B, Aspenberg P (2002) Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine 27:2654–2661. doi:10.1097/00007632-200212010-00004

    Article  PubMed  Google Scholar 

  48. Jorgenson SS, Lowe TG, France J, Sabin J (1994) A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine 19:2048–2053

    Article  PubMed  CAS  Google Scholar 

  49. Kaito T, Mukai Y, Nishikawa M, Ando W, Yoshikawa H, Myoui A (2006) Dual hydroxyapatite composite with porous and solid parts: experimental study using canine lumbar interbody fusion model. J Biomed Mater Res B Appl Biomater 78:378–384. doi:10.1002/jbm.b.30498

    PubMed  Google Scholar 

  50. Kanayama M, Hashimoto T, Shigenobu K, Yamane S, Bauer TW, Togawa D (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine 31:1067–1074. doi:10.1097/01.brs.0000216444.01888.21

    Article  PubMed  Google Scholar 

  51. Korovessis P, Koureas G, Zacharatos S, Papazisis Z, Lambiris E (2005) Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur Spine J 14:630–638. doi:10.1007/s00586-004-0855-5

    Article  PubMed  Google Scholar 

  52. Lee TC, Ho JT, Hung KS, Chen WF, Chung YH, Yang YL (2006) Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment. Neurosurgery 58:373–380. doi:10.1227/01.NEU.0000199725.03186.F6

    Article  PubMed  Google Scholar 

  53. Lee YP, Jo M, Luna M, Chien B, Lieberman JR, Wang JC (2005) The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech 18:439–444. doi:10.1097/01.bsd.0000175696.66049.f7

    Article  PubMed  Google Scholar 

  54. Lind M, Deleuran B, Thestrup-Pedersen K, Soballe K, Eriksen EF, Bunger C (1995) Chemotaxis of human osteoblasts. Effects of osteotropic growth factors. APMIS 103:140–146

    Article  PubMed  CAS  Google Scholar 

  55. Lindfors NC, Tallroth K, Aho AJ (2002) Bioactive glass as bone-graft substitute for posterior spinal fusion in rabbit. J Biomed Mater Res 63:237–244. doi:10.1002/jbm.10177

    Article  PubMed  CAS  Google Scholar 

  56. Louis-Ugbo J, Murakami H, Kim HS, Minamide A, Boden SD (2004) Evidence of osteoinduction by Grafton demineralized bone matrix in nonhuman primate spinal fusion. Spine 29:360–366. doi:10.1097/01.BRS.0000090823.12652.F9

    Article  PubMed  Google Scholar 

  57. Lowery GL, Kulkarni S, Pennisi AE (1999) Use of autologous growth factors in lumbar spinal fusion. Bone 25:47S–50S. doi:10.1016/S8756-3282(99)00132-5

    Article  PubMed  CAS  Google Scholar 

  58. Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K, Wang JC (2007) The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J 7:50–60. doi:10.1016/j.spinee.2006.04.020

    Article  PubMed  Google Scholar 

  59. Mack CA, Song WR, Carpenter H, Wickham TJ, Kovesdi I, Harvey BG, Magovern CJ, Isom OW, Rosengart T, Falck-Pedersen E, Hackett NR, Crystal RG, Mastrangeli A (1997) Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther 8:99–109. doi:10.1089/hum.1997.8.1-99

    Article  PubMed  CAS  Google Scholar 

  60. Martin GJ Jr, Boden SD, Titus L, Scarborough NL (1999) New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 24:637–645. doi:10.1097/00007632-199904010-00005

    Article  PubMed  Google Scholar 

  61. McClellan JW, Mulconrey DS, Forbes RJ, Fullmer N (2006) Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J Spinal Disord Tech 19:483–486. doi:10.1097/01.bsd.0000211231.83716.4b

    Article  PubMed  Google Scholar 

  62. McGuire RA, Amundson GM (1993) The use of primary internal fixation in spondylolisthesis. Spine 18:1662–1672. doi:10.1097/00007632-199309000-00015

    Article  PubMed  CAS  Google Scholar 

  63. Minamide A, Yoshida M, Kawakami M, Yamasaki S, Kojima H, Hashizume H, Boden SD (2005) The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine 30:1134–1138. doi:10.1097/01.brs.0000162394.75425.04

    Article  PubMed  Google Scholar 

  64. Miyazaki M, Sugiyama O, Tow B, Zou J, Morishita Y, Wei F, Napoli A, Sintuu C, Lieberman JR, Wang JC (2008) The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Spinal Disord Tech 21:372–379. doi:10.1097/BSD.0b013e31814cf51d

    Article  PubMed  Google Scholar 

  65. Motomiya M, Ito M, Takahata M, Kadoya K, Irie K, Abumi K, Minami A (2007) Effect of hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model. Eur Spine J 16:2215–2224. doi:10.1007/s00586-007-0501-0

    Article  PubMed  Google Scholar 

  66. Muschik M, Ludwig R, Halbhubner S, Bursche K, Stoll T (2001) Beta-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study. Eur Spine J 10(Suppl 2):S178–S184. doi:10.1007/s005860100271

    Article  PubMed  Google Scholar 

  67. Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan AI (1991) In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 195:492–503. doi:10.1016/0014-4827(91)90401-F

    Article  PubMed  CAS  Google Scholar 

  68. Obremskey WT, Pappas N, Attallah-Wasif E, Tornetta PIII, Bhandari M (2005) Level of evidence in orthopaedic journals. J Bone Joint Surg Am 87:2632–2638. doi:10.2106/JBJS.E.00370

    Article  PubMed  Google Scholar 

  69. Passuti N, Daculsi G, Rogez JM, Martin S, Bainvel JV (1989) Macroporous calcium phosphate ceramic performance in human spine fusion. Clin Orthop Relat Res 248:169–176

    PubMed  Google Scholar 

  70. Peterson B, Iglesias R, Zhang J, Wang JC, Lieberman JR (2005) Genetically modified human derived bone marrow cells for posterolateral lumbar spine fusion in athymic rats: beyond conventional autologous bone grafting. Spine 30:283–289. doi:10.1097/01.brs.0000152380.71248.fe

    Article  PubMed  Google Scholar 

  71. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR (2004) Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am 86-A:2243–2250

    PubMed  Google Scholar 

  72. Pradhan BB, Bae HW, Dawson EG, Patel VV, Delamarter RB (2006) Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine 31:E277–E284. doi:10.1097/01.brs.0000216442.12092.01

    Article  PubMed  Google Scholar 

  73. Price CT, Connolly JF, Carantzas AC, Ilyas I (2003) Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine 28:793–798. doi:10.1097/00007632-200304150-00012

    Article  PubMed  Google Scholar 

  74. Ransford AO, Morley T, Edgar MA, Webb P, Passuti N, Chopin D, Morin C, Michel F, Garin C, Pries D (1998) Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br 80:13–18. doi:10.1302/0301-620X.80B1.7276

    Article  PubMed  CAS  Google Scholar 

  75. Salamon ML, Althausen PL, Gupta MC, Laubach J (2003) The effects of BMP-7 in a rat posterolateral intertransverse process fusion model. J Spinal Disord Tech 16:90–95

    PubMed  Google Scholar 

  76. Sassard WR, Eidman DK, Gray PM, Block JE, Russo R, Russell JL, Taboada EM (2000) Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics 23:1059–1064

    PubMed  CAS  Google Scholar 

  77. Savolainen S, Usenius JP, Hernesniemi J (1994) Iliac crest versus artificial bone grafts in 250 cervical fusions. Acta Neurochir (Wien) 129:54–57. doi:10.1007/BF01400873

    Article  CAS  Google Scholar 

  78. Schunemann HJ, Jaeschke R, Cook DJ, Bria WF, El-Solh AA, Ernst A, Fahy BF, Gould MK, Horan KL, Krishnan JA, Manthous CA, Maurer JR, McNicholas WT, Oxman AD, Rubenfeld G, Turino GM, Guyatt G (2006) An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am J Respir Crit Care Med 174:605–614. doi:10.1164/rccm.200602-197ST

    Article  PubMed  Google Scholar 

  79. Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31:542–547. doi:10.1097/01.brs.0000201424.27509.72

    Article  PubMed  Google Scholar 

  80. Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139. doi:10.1097/00007632-200301150-00008

    Article  PubMed  Google Scholar 

  81. Slosar PJ, Josey R, Reynolds J (2007) Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J 7:301–307. doi:10.1016/j.spinee.2006.10.015

    Article  PubMed  Google Scholar 

  82. Stieger K, Le Meur G, Lasne F, Weber M, Deschamps JY, Nivard D, Mendes-Madeira A, Provost N, Martin L, Moullier P, Rolling F (2006) Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther 13:967–975. doi:10.1016/j.ymthe.2005.12.001

    Article  PubMed  CAS  Google Scholar 

  83. Sugiyama O, An DS, Kung SP, Feeley BT, Gamradt S, Liu NQ, Chen IS, Lieberman JR (2005) Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11:390–398. doi:10.1016/j.ymthe.2004.10.019

    Article  PubMed  CAS  Google Scholar 

  84. Thalgott JS, Fritts K, Giuffre JM, Timlin M (1999) Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine 24:1295–1299. doi:10.1097/00007632-199907010-00005

    Article  PubMed  CAS  Google Scholar 

  85. Thalgott JS, Giuffre JM, Klezl Z, Timlin M (2002) Anterior lumbar interbody fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine J 2:63–69. doi:10.1016/S1529-9430(01)00155-3

    Article  PubMed  Google Scholar 

  86. Thalgott JS, Klezl Z, Timlin M, Giuffre JM (2002) Anterior lumbar interbody fusion with processed sea coral (coralline hydroxyapatite) as part of a circumferential fusion. Spine 27:E518–E525. doi:10.1097/00007632-200212150-00011

    Article  PubMed  Google Scholar 

  87. Tsuang YH, Yang RS, Chen PQ, Liu TK (1989) Experimental allograft in spinal fusion in dogs. Taiwan Yi Xue Hui Za Zhi 88:989–994

    PubMed  CAS  Google Scholar 

  88. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899. doi:10.1126/science.150.3698.893

    Article  PubMed  CAS  Google Scholar 

  89. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283. doi:10.1097/00003086-196707000-00026

    Article  PubMed  CAS  Google Scholar 

  90. Urist MR, Strates BS (1970) Bone formation in implants of partially and wholly demineralized bone matrix. Including observations on acetone-fixed intra and extracellular proteins. Clin Orthop Relat Res 71:271–278. doi:10.1097/00003086-197007000-00031

    Article  PubMed  CAS  Google Scholar 

  91. Vaccaro AR, Whang PG, Patel T, Phillips FM, Anderson DG, Albert TJ, Hilibrand AS, Brower RS, Kurd MF, Appannagari A, Patel M, Fischgrund JS (2007) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J 8:457–465. doi:10.1016/j.spinee.2007.03.012

    Article  PubMed  Google Scholar 

  92. Vaccaro AR, Anderson DG, Patel T, Fischgrund J, Truumees E, Herkowitz HN, Phillips F, Hilibrand A, Albert TJ, Wetzel T, McCulloch JA (2005) Comparison of OP-1 Putty (rhBMP-7) to iliac crest autograft for posterolateral lumbar arthrodesis: a minimum 2-year follow-up pilot study. Spine 30:2709–2716. doi:10.1097/01.brs.0000190812.08447.ba

    Article  PubMed  Google Scholar 

  93. Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz H, Phillips F, Hilibrand A, Albert TJ (2003) A pilot safety and efficacy study of OP-1 putty (rhBMP-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J 12:495–500. doi:10.1007/s00586-003-0561-8

    Article  PubMed  Google Scholar 

  94. Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz H, Phillips F, Hilibrand A, Albert TJ (2005) A 2-year follow-up pilot study evaluating the safety and efficacy of op-1 putty (rhbmp-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J 14:623–629. doi:10.1007/s00586-004-0845-7

    Article  PubMed  Google Scholar 

  95. Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz HN, Phillips F, Hilibrand A, Albert TJ, Wetzel T, McCulloch JA (2004) A pilot study evaluating the safety and efficacy of OP-1 Putty (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine 29:1885–1892. doi:10.1097/01.brs.0000137062.79201.98

    Article  PubMed  Google Scholar 

  96. Vaccaro AR, Stubbs HA, Block JE (2007) Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics 30:567–570

    PubMed  Google Scholar 

  97. Vadala G, Sowa GA, Smith L, Hubert MG, Levicoff EA, Denaro V, Gilbertson LG, Kang JD (2007) Regulation of transgene expression using an inducible system for improved safety of intervertebral disc gene therapy. Spine 32:1381–1387. doi:10.1097/BRS.0b013e3180601215

    Article  PubMed  Google Scholar 

  98. Vaidya R, Carp J, Sethi A, Bartol S, Craig J, Les CM (2007) Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J 16:1257–1265. doi:10.1007/s00586-007-0351-9

    Article  PubMed  Google Scholar 

  99. Viggeswarapu M, Boden SD, Liu Y, Hair GA, Louis-Ugbo J, Murakami H, Kim HS, Mayr MT, Hutton WC, Titus L (2001) Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am 83-A:364–376

    PubMed  CAS  Google Scholar 

  100. Wang JC, Alanay A, Mark D, Kanim LE, Campbell PA, Dawson EG, Lieberman JR (2007) A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J 16:1233–1240. doi:10.1007/s00586-006-0282-x

    Article  PubMed  Google Scholar 

  101. Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR (2003) Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 85-A:905–911

    PubMed  Google Scholar 

  102. Wang T, Dang G, Guo Z, Yang M (2005) Evaluation of autologous bone marrow mesenchymal stem cell-calcium phosphate ceramic composite for lumbar fusion in rhesus monkey interbody fusion model. Tissue Eng 11:1159–1167. doi:10.1089/ten.2005.11.1159

    Article  PubMed  CAS  Google Scholar 

  103. Weiner BK, Walker M (2003) Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine 28:1968–1970. doi:10.1097/01.BRS.0000083141.02027.48

    Article  PubMed  Google Scholar 

  104. Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65:22–26

    PubMed  CAS  Google Scholar 

  105. Wupperman R, Davis R, Obremskey WT (2007) Level of evidence in Spine compared to other orthopedic journals. Spine 32:388–393. doi:10.1097/01.brs.0000254109.12449.6c

    Article  PubMed  Google Scholar 

  106. Xie Y, Chopin D, Morin C, Hardouin P, Zhu Z, Tang J, Lu J (2006) Evaluation of the osteogenesis and biodegradation of porous biphasic ceramic in the human spine. Biomaterials 27:2761–2767. doi:10.1016/j.biomaterials.2005.12.011

    Article  PubMed  CAS  Google Scholar 

  107. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91:4407–4411. doi:10.1073/pnas.91.10.4407

    Article  PubMed  CAS  Google Scholar 

  108. Yee AJ, Bae HW, Friess D, Robbin M, Johnstone B, Yoo JU (2003) Augmentation of rabbit posterolateral spondylodesis using a novel demineralized bone matrix-hyaluronan putty. Spine 28:2435–2440. doi:10.1097/01.BRS.0000090828.65638.8C

    Article  PubMed  Google Scholar 

  109. Young WF, Rosenwasser RH (1993) An early comparative analysis of the use of fibular allograft versus autologous iliac crest graft for interbody fusion after anterior cervical discectomy. Spine 18:1123–1124. doi:10.1097/00007632-199307000-00002

    Article  PubMed  CAS  Google Scholar 

  110. Zdeblick TA (1993) A prospective, randomized study of lumbar fusion. Preliminary results. Spine 18:983–991

    Article  PubMed  CAS  Google Scholar 

  111. Zdeblick TA, Ducker TB (1991) The use of freeze-dried allograft bone for anterior cervical fusions. Spine 16:726–729. doi:10.1097/00007632-199107000-00006

    Article  PubMed  CAS  Google Scholar 

  112. Zhang ZH, Yin H, Yang K, Zhang T, Dong F, Dang G, Lou SQ, Cai Q (1983) Anterior intervertebral disc excision and bone grafting in cervical spondylotic myelopathy. Spine 8:16–19. doi:10.1097/00007632-198301000-00002

    Article  PubMed  Google Scholar 

  113. Zhu W, Rawlins BA, Boachie-Adjei O, Myers ER, Arimizu J, Choi E, Lieberman JR, Crystal RG, Hidaka C (2004) Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. J Bone Miner Res 19:2021–2032. doi:10.1359/JBMR.040821

    Article  PubMed  CAS  Google Scholar 

  114. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    PubMed  CAS  Google Scholar 

  115. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. doi:10.1089/107632701300062859

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Alanay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, M., Tsumura, H., Wang, J.C. et al. An update on bone substitutes for spinal fusion. Eur Spine J 18, 783–799 (2009). https://doi.org/10.1007/s00586-009-0924-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-0924-x

Keywords

Navigation