Skip to main content

Advertisement

Log in

Improving safety in spinal deformity surgery: advances in navigation and neurologic monitoring

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

The treatment of spinal deformities has rapidly changed during the past decade. The advent of new surgical techniques, particularly thoracic pedicle screws and spinal osteotomies, allow more aggressive deformity correction, and require an increased focus on safety.

Materials and methods

Review of the navigation systems and neuromonitoring techniques currently available.

Conclusion

Navigation systems today are where intraoperative neuromonitoring was 20 years ago: new, under investigation, not widely accepted, with concerns for cost, safety and efficiency. Navigation enhances the accuracy of pedicle screws placement in deformed spines, reducing the rate of misplaced screws and potential complications. With further use and investigation, navigation, like neuromonitoring, will soon become standard at major spine centers throughout the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB (1995) Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine 20(12):1399–4052

    PubMed  CAS  Google Scholar 

  2. Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER (2001) Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine 26(18):2049–2057

    Article  PubMed  CAS  Google Scholar 

  3. Dobbs MB, Lenke LG, Kim YJ, Kamath G, Peelle MW, Bridwell KH (2006) Selective posterior thoracic fusions for adolescent idiopathic scoliosis: comparison of hooks versus pedicle screws. Spine 31(20):2400–2404

    Article  PubMed  Google Scholar 

  4. Lehman RA Jr, Lenke LG, Keeler KA, Kim YJ, Buchowski JM, Cheh G et al (2008) Operative treatment of adolescent idiopathic scoliosis with posterior pedicle screw-only constructs: minimum three-year follow-up of one hundred fourteen cases. Spine 33(14):1598–1604

    Article  PubMed  Google Scholar 

  5. Liljenqvist U, Lepsien U, Hackenberg L, Niemeyer T, Halm H (2002) Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis. Eur Spine J 11(4):336–343

    Article  PubMed  CAS  Google Scholar 

  6. Lenke LG, Kuklo TR, Ondra S, Polly DW Jr (2008) Rationale behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era). Spine 33(10):1051–1054

    Article  PubMed  Google Scholar 

  7. Ledonio CG, Polly DW Jr, Vitale MG, Wang Q, Richards BS (2011) Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the Pediatric Orthopaedic Society of North America task force. J Bone Joint Surg Am 93(13):1227–1234

    Article  PubMed  Google Scholar 

  8. Luhmann SJ, Lenke LG, Kim YJ, Bridwell KH, Schootman M (2005) Thoracic adolescent idiopathic scoliosis curves between 70 degrees and 100 degrees: is anterior release necessary? Spine 30(18):2061–2067

    Article  PubMed  Google Scholar 

  9. Kuklo TR, Lenke LG, O’Brien MF, Lehman RA Jr, Polly DW Jr, Schroeder TM (2005) Accuracy and efficacy of thoracic pedicle screws in curves more than 90 degrees. Spine 30(2):222–226

    Article  PubMed  Google Scholar 

  10. Odgers CJt, Vaccaro AR, Pollack ME, Cotler JM (1996) Accuracy of pedicle screw placement with the assistance of lateral plain radiography. J Spinal Disord 9(4):334–338

  11. Coe JD, Arlet V, Donaldson W, Berven S, Hanson DS, Mudiyam R et al (2006) Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine 31(3):345–349

    Article  PubMed  Google Scholar 

  12. Di Silvestre M, Parisini P, Lolli F, Bakaloudis G (2007) Complications of thoracic pedicle screws in scoliosis treatment. Spine 32(15):1655–1661

    Article  PubMed  Google Scholar 

  13. Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB (1999) Complications associated with pedicle screws. J Bone Joint Surg Am 81(11):1519–1528

    PubMed  CAS  Google Scholar 

  14. Minor ME, Morrissey NJ, Peress R, Carroccio A, Ellozy S, Agarwal G et al (2004) Endovascular treatment of an iatrogenic thoracic aortic injury after spinal instrumentation: case report. J Vasc Surg 39(4):893–896

    Article  PubMed  Google Scholar 

  15. Kakkos SK, Shepard AD (2008) Delayed presentation of aortic injury by pedicle screws: report of two cases and review of the literature. J Vasc Surg 47(5):1074–1082

    Article  PubMed  Google Scholar 

  16. Choi JB, Han JO, Jeong JW (2001) False aneurysm of the thoracic aorta associated with an aorto-chest wall fistula after spinal instrumentation. J Trauma 50(1):140–143

    Article  PubMed  CAS  Google Scholar 

  17. Wegener B, Birkenmaier C, Fottner A, Jansson V, Durr HR (2008) Delayed perforation of the aorta by a thoracic pedicle screw. Eur Spine J 17(Suppl 2):S351–S354

    Article  PubMed  Google Scholar 

  18. Harimaya K, Lenke LG, Son-Hing JP, Bridwell KH, Schwend RM, Luhmann SJ et al (2011) Safety and accuracy of pedicle screws and constructs placed in infantile and juvenile patients. Spine 36(20):1645–1651

    Article  PubMed  Google Scholar 

  19. Misenhimer GR, Peek RD, Wiltse LL, Rothman SL, Widell EH Jr (1989) Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size. Spine 14(4):367–372

    Article  PubMed  CAS  Google Scholar 

  20. Sjostrom L, Jacobsson O, Karlstrom G, Pech P, Rauschning W (1993) CT analysis of pedicles and screw tracts after implant removal in thoracolumbar fractures. J Spinal Disord 6(3):225–231

    Article  PubMed  CAS  Google Scholar 

  21. Gang C, Haibo L, Fancai L, Weishan C, Qixin C (2011) Learning curve of thoracic pedicle screw placement using the free-hand technique in scoliosis: how many screws needed for an apprentice? Eur Spine J Epub 2011/11/15

  22. Gonzalvo A, Fitt G, Liew S, de la Harpe D, Turner P, Ton L et al (2009) The learning curve of pedicle screw placement: how many screws are enough? Spine 34(21):E761–E765

    Article  PubMed  Google Scholar 

  23. Lonner BS, Auerbach JD, Estreicher MB, Kean KE (2009) Thoracic pedicle screw instrumentation: the learning curve and evolution in technique in the treatment of adolescent idiopathic scoliosis. Spine 34(20):2158–2164

    Article  PubMed  Google Scholar 

  24. Samdani AF, Ranade A, Saldanha V, Yondorf MZ (2010) Learning curve for placement of thoracic pedicle screws in the deformed spine. Neurosurgery 66(2):290–294 (discussion 4–5)

    Google Scholar 

  25. Lehman RA Jr, Lenke LG, Keeler KA, Kim YJ, Cheh G (2007) Computed tomography evaluation of pedicle screws placed in the pediatric deformed spine over an 8-year period. Spine 32(24):2679–2684

    Article  PubMed  Google Scholar 

  26. Smorgick Y, Millgram MA, Anekstein Y, Floman Y, Mirovsky Y (2005) Accuracy and safety of thoracic pedicle screw placement in spinal deformities. J Spinal Disord Tech 18(6):522–526

    Article  PubMed  Google Scholar 

  27. Sarlak AY, Tosun B, Atmaca H, Sarisoy HT, Buluc L (2009) Evaluation of thoracic pedicle screw placement in adolescent idiopathic scoliosis. Eur Spine J 18(12):1892–1897

    Article  PubMed  Google Scholar 

  28. Amaral TD, Wollowick AL, Kulkarni PM, Thornhill B, Suggs W, Sugarman EP, et al (2011) How commonly are pedicle screws adjacent to the great vessels or viscera? A study of 2,295 pedicle screws. Presented at the 46th Annual Meeting of the Scoliosis Research Society

  29. Ughwanogho E, Patel NM, Baldwin KD, Sampson NR, Flynn J (2012) CT-guided navigation of thoracic pedicle screws for AIS results in more accurate placement and less screw removal. Spine

  30. Ughwanogho E, Patel NM, Baldwin KD, Sampson NR, Flynn JM. CT-guided navigation of thoracic pedicle screws for AIS results in more accurate placement and less screw removal. Presented at the 46th Annual Meeting of the Scoliosis Research Society

  31. Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Dvorak J (2007) Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients. Eur Spine J 16(Suppl 2):S188–S196

    Article  PubMed  Google Scholar 

  32. Perot PL Jr (1973) Chapter 28. The clinical use of somatosensory evoked potentials in spinal cord injury. Clin Neurosurg 20:367–381

    PubMed  Google Scholar 

  33. Engler GL, Spielholz NJ, Bernhard WN, Danziger F, Merkin H, Wolff T (1978) Somatosensory evoked potentials during Harrington instrumentation for scoliosis. J Bone Joint Surg Am 60(4):528–532

    Google Scholar 

  34. Gavaret M, Trebuchon A, Aubert S, Jacopin S, Blondel B, Glard Y et al (2011) Intraoperative monitoring in pediatric orthopedic spinal surgery: three hundred consecutive monitoring cases of which 10 % of patients were younger than 4 years of age. Spine 36(22):1855–1863

    Article  PubMed  Google Scholar 

  35. Calancie B, Lebwohl N, Madsen P, Klose KJ (1992) Intraoperative evoked EMG monitoring in an animal model. A new technique for evaluating pedicle screw placement. Spine 17(10):1229–1235

    Article  PubMed  CAS  Google Scholar 

  36. Calancie B, Madsen P, Lebwohl N (1994) Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine 19(24):2780–2786

    Article  PubMed  CAS  Google Scholar 

  37. Maguire J, Wallace S, Madiga R, Leppanen R, Draper V (1995) Evaluation of intrapedicular screw position using intraoperative evoked electromyography. Spine 20(9):1068–1074

    Article  PubMed  CAS  Google Scholar 

  38. Clements DH, Morledge DE, Martin WH, Betz RR (1996) Evoked and spontaneous electromyography to evaluate lumbosacral pedicle screw placement. Spine 21(5):600–604

    Article  PubMed  CAS  Google Scholar 

  39. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine 15(1):11–14

    Article  PubMed  CAS  Google Scholar 

  40. Shi YB, Binette M, Martin WH, Pearson JM, Hart RA (2003) Electrical stimulation for intraoperative evaluation of thoracic pedicle screw placement. Spine 28(6):595–601

    PubMed  Google Scholar 

  41. Eggspuehler A, Sutter MA, Grob D, Porchet F, Jeszenszky D, Dvorak J (2007) Multimodal intraoperative monitoring (MIOM) during surgical decompression of thoracic spinal stenosis in 36 patients. Eur Spine J 16(Suppl 2):S216–S220

    Article  PubMed  Google Scholar 

  42. Lenke LG, O’Leary PT, Bridwell KH, Sides BA, Koester LA, Blanke KM (2009) Posterior vertebral column resection for severe pediatric deformity: minimum two-year follow-up of thirty-five consecutive patients. Spine (Phila Pa 1976) 34(20):2213–2221

    Google Scholar 

  43. Lenke LG, Sides BA, Koester LA, Hensley M, Blanke KM (2010) Vertebral column resection for the treatment of severe spinal deformity. Clin Orthop Relat Res 468(3):687–699

    Article  PubMed  Google Scholar 

  44. Suk SI, Chung ER, Lee SM, Lee JH, Kim SS, Kim JH (2005) Posterior vertebral column resection in fixed lumbosacral deformity. Spine (Phila Pa 1976) 30(23):E703–E710

    Google Scholar 

  45. Suk SI, Chung ER, Kim JH, Kim SS, Lee JS, Choi WK (2005) Posterior vertebral column resection for severe rigid scoliosis. Spine (Phila Pa 1976) 30(14):1682–1687

    Google Scholar 

  46. Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Porchet F, Dvorak J (2007) Multimodal intraoperative monitoring (MIOM) during cervical spine surgical procedures in 246 patients. Eur Spine J 16(Suppl 2):S209–S215

    Article  PubMed  Google Scholar 

  47. Nash CL Jr, Lorig RA, Schatzinger LA, Brown RH (1977) Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res 126:100–105

    PubMed  Google Scholar 

  48. Spielholz NI, Benjamin MV, Engler GL, Ransohoff J (1979) Somatosensory evoked potentials during decompression and stabilization of the spine. Methods and findings. Spine 4(6):500–505

    Article  PubMed  CAS  Google Scholar 

  49. Brown RH, Nash CL Jr (1984) Cortical evoked potential monitoring. A system for intraoperative monitoring of spinal cord function. Spine 9(3):256–261

    Article  PubMed  CAS  Google Scholar 

  50. Mostegl A, Bauer R (1984) The application of somatosensory-evoked potentials in orthopedic spine surgery. Arch Orthop Trauma Surg 103(3):179–184

    Article  PubMed  CAS  Google Scholar 

  51. Keim HA, Hajdu M, Gonzalez EG, Brand L, Balasubramanian E (1985) Somatosensory evoked potentials as an aid in the diagnosis and intraoperative management of spinal stenosis. Spine 10(4):338–344

    Article  PubMed  CAS  Google Scholar 

  52. Yang J, Huang Z, Shu H, Chen Y, Sun X, Liu W, et al (2012) Improving successful rate of transcranial electrical motor-evoked potentials monitoring during spinal surgery in young children. Eur Spine J 21(5):980–984

    Article  PubMed  Google Scholar 

  53. Lenke LG, Padberg AM, Russo MH, Bridwell KH, Gelb DE (1995) Triggered electromyographic threshold for accuracy of pedicle screw placement. An animal model and clinical correlation. Spine (Phila Pa 1976) 20(14):1585–1591

    Article  CAS  Google Scholar 

  54. Dvorak J, Sutter M, Eggspuehler A, Szpalski M, Aebi M (2007) Multimodal intraoperative monitoring: towards a routine use in surgical treatment of severe spinal disorders. Eur Spine J 16(Suppl 2):S113–S114

    Article  PubMed  Google Scholar 

  55. Sutter M, Deletis V, Dvorak J, Eggspuehler A, Grob D, Macdonald D et al (2007) Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J 16(Suppl 2):S232–S237

    Article  PubMed  Google Scholar 

  56. Pajewski TN, Arlet V, Phillips LH (2007) Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur Spine J 16(Suppl 2):S115–S129

    Article  PubMed  Google Scholar 

  57. Dawson EG, Sherman JE, Kanim LE, Nuwer MR (1991) Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine 16(8 Suppl):S361–S364

    Google Scholar 

  58. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96(1):6–11

    Article  PubMed  CAS  Google Scholar 

  59. Tabaraud F, Boulesteix JM, Moulies D, Longis B, Lansade A, Terrier G et al (1993) Monitoring of the motor pathway during spinal surgery. Spine 18(5):546–550

    Article  PubMed  CAS  Google Scholar 

  60. Boyd SG, Rothwell JC, Cowan JM, Webb PJ, Morley T, Asselman P et al (1986) A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 49(3):251–257

    Article  PubMed  CAS  Google Scholar 

  61. Deletis V (2007) Basic methodological principles of multimodal intraoperative monitoring during spine surgeries. Eur Spine J 16(Suppl 2):S147–S152

    Article  PubMed  Google Scholar 

  62. Pastorelli F, Di Silvestre M, Plasmati R, Michelucci R, Greggi T, Morigi A et al (2011) The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J 20(Suppl 1):S105–S114

    Article  PubMed  Google Scholar 

  63. Macdonald DB (2007) Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: results in 206 thoracolumbar spine surgeries. Eur Spine J 16(Suppl 2):S171–S187

    Article  PubMed  Google Scholar 

  64. Sutter M, Eggspuehler A, Grob D, Jeszenszky D, Benini A, Porchet F et al (2007) The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1,017 patients. Eur Spine J 16(Suppl 2):S162–S170

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Flynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, J.M., Sakai, D.S. Improving safety in spinal deformity surgery: advances in navigation and neurologic monitoring. Eur Spine J 22 (Suppl 2), 131–137 (2013). https://doi.org/10.1007/s00586-012-2360-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2360-6

Keywords

Navigation