Skip to main content
Log in

Does the type of T2-weighted hyperintensity influence surgical outcome in patients with cervical spondylotic myelopathy? A review

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To review the literature on different classifications of T2-weighted (T2W) increased signal intensity (ISI) on preoperative magnetic resonance (MR) images of patients with cervical spondylotic myelopathy (CSM).

Methods

The authors searched the databases of PubMed and Cochrane for studies that used a categorization of T2W ISI to predict the functional outcome after decompressive surgery for CSM. Selected studies were analyzed for the type of ISI classification used, patient selection, methodology and results. The level of evidence provided by each study was determined.

Results

Twenty-two studies fulfilled our search criteria. There were 11 prospective studies and a total of 1,508 patients were studied. The majority of studies classified ISI based on either the longitudinal extent (12 studies) or the qualitative features of the ISI (10 studies). Three studies used both parameters to classify T2W ISI. Other classifications were based on the position of ISI (1 study), presence of snake-eye appearance on axial MR images (1 study) and signal intensity ratio (SIR) (1 study). Poorer functional outcomes correlated with sharp, intense ISI (6 studies) and multisegmental ISI (5 studies) (Class II evidence). Five of ten studies reported that the regression of ISI postoperatively was associated with better neurological outcomes (Class II evidence).

Conclusions

Methodological variations in previous studies made it difficult to compare studies and results. Both multisegmental T2W ISI and sharp, intense T2W ISI are associated with poorer surgical outcome (Class II evidence). The regression of T2W ISI postoperatively correlates with better functional outcomes (Class II). Future studies on the significance of ISI should ensure use of a uniform grading system, standardized outcome measures and multivariate analyses to control for other preoperative variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mummaneni PV, Kaiser MG, Matz PG, Anderson PA, Groff M, Heary R, Holly L, Ryken T, Choudhri T, Vresilovic E, Resnick D (2009) Preoperative patient selection with magnetic resonance imaging, computed tomography, and electroencephalography: does the test predict outcome after cervical surgery? J Neurosurg Spine 11(2):119–129

    Article  PubMed  Google Scholar 

  2. Avadhani A, Rajasekaran S, Shetty AP (2010) Comparison of prognostic value of different MRI classifications of signal intensity change in cervical spondylotic myelopathy. Spine J 10(6):475–485

    Article  PubMed  Google Scholar 

  3. Wada E, Yonenobu K, Suzuki S, Kanazawa A, Ochi T (1999) Can intramedullary signal change on magnetic resonance imaging predict surgical outcome in cervical spondylotic myelopathy. Spine (Phila Pa 1976) 24(5):455–456

    Article  CAS  Google Scholar 

  4. Chatley A, Kumar R, Jain VK, Behari S, Sahu RN (2009) Effect of spinal cord signal intensity changes on clinical outcome after surgery for cervical spondylotic myelopathy. J Neurosurg Spine 11(5):562–567

    Article  PubMed  Google Scholar 

  5. Chen CJ, Lyu RK, Lee ST, Wong YC, Wang LJ (2001) Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity. Radiology 221(3):789–794

    Article  PubMed  CAS  Google Scholar 

  6. Yone K, Sakou T, Yanase M, Ijiri K (1992) Preoperative and postoperative magnetic resonance image evaluations of the spinal cord in cervical myelopathy. Spine (Phila Pa 1976) 17(10 Suppl):S388–S392

    Article  CAS  Google Scholar 

  7. Houten JK, Cooper PR (2003) Laminectomy and posterior cervical plating for multilevel cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: effects on cervical alignment, spinal cord compression, and neurological outcome. Neurosurgery 52(5):1081–1087

    Article  PubMed  Google Scholar 

  8. Fernandez de Rota JJ, Meschian S, Fernandez de Rota A, Urbano V, Baron M (2007) Cervical spondylotic myelopathy due to chronic compression: the role of signal intensity changes in magnetic resonance images. J Neurosurg Spine 6(1):17–22

    Article  PubMed  Google Scholar 

  9. Mastronardi L, Elsawaf A, Roperto R, Bozzao A, Caroli M, Ferrante M, Ferrante L (2007) Prognostic relevance of the postoperative evolution of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy. J Neurosurg Spine 7(6):615–622

    Article  PubMed  Google Scholar 

  10. Yukawa Y, Kato F, Yoshihara H, Yanase M, Ito K (2007) MR T2 image classification in cervical compression myelopathy: predictor of surgical outcomes. Spine (Phila Pa 1976) 32(15):1675–1678

    Article  Google Scholar 

  11. Suri A, Chabbra RP, Mehta VS, Gaikwad S, Pandey RM (2003) Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J 3(1):33–45

    Article  PubMed  Google Scholar 

  12. Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y (2001) Correlation between operative outcomes of cervical compression myelopathy and MRI of the spinal cord. Spine (Phila Pa 1976) 26(11):1238–1245

    Article  CAS  Google Scholar 

  13. Vedantam A, Jonathan A, Rajshekhar V (2011) Association of magnetic resonance imaging signal changes and outcome prediction after surgery for cervical spondylotic myelopathy. J Neurosurg Spine 15(6):660–666

    Article  PubMed  Google Scholar 

  14. Matsuda Y, Miyazaki K, Tada K, Yasuda A, Nakayama T, Murakami H, Matsuo M (1991) Increased MR signal intensity due to cervical myelopathy. Analysis of 29 surgical cases. J Neurosurg 74(6):887

    Article  PubMed  CAS  Google Scholar 

  15. Morio Y, Yamamoto K, Kuranobu K, Murata M, Tuda K (1994) Does increased signal intensity of the spinal cord on MR images due to cervical myelopathy predict prognosis? Arch Orthop Trauma Surg 113(5):254–259

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi M, Yamashita Y, Sakamoto Y, Kojima R (1989) Chronic cervical cord compression: clinical significance of increased signal intensity on MR images. Radiology 173(1):219–224

    PubMed  CAS  Google Scholar 

  17. Haines SJ (2003) Evidence-based neurosurgery. Neurosurgery 52(1):36–47

    PubMed  Google Scholar 

  18. Aarabi B, Alden TD, Chestnut RM, Downs JH III, Ecklund JM, Eisenberg HM, Farace E, Florin RE, Jane JA Jr, Kreiger MD, Maas AIR, Narayan RK, Potapov AA, Salazar AM, Shaffrey ME, Walters BC (2001) Management and prognosis of penetrating brain injury. J Trauma 51(Suppl 2):S44–S49

    Google Scholar 

  19. Wright JG, Swiontkowski MF, Heckman JD (2003) Introducing levels of evidence to the journal. J Bone Jt Surg Am 85-A(1):1–3

    Google Scholar 

  20. Fehlings MG, Brodke DS, Norvell DC, Dettori JR (2010) The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine (Phila Pa 1976) 35(9 Suppl):S37–S46

    Article  Google Scholar 

  21. Schoenfeld AJ, Sieg RN, Li G, Bader JO, Belmont PJ Jr, Bono CM (2011) Outcomes after spine surgery among racial/ethnic minorities: a meta-analysis of the literature. Spine J 11(5):381–388

    Article  PubMed  Google Scholar 

  22. Schoenfeld AJ, Bono CM, McGuire KJ, Warholic N, Harris MB (2010) Computed tomography alone versus computed tomography and magnetic resonance imaging in the identification of occult injuries to the cervical spine: a meta-analysis. J Trauma 68(1):109–113 discussion 113–104

    Article  PubMed  Google Scholar 

  23. Riley LH, 3rd, Vaccaro AR, Dettori JR, Hashimoto R (2010) Postoperative dysphagia in anterior cervical spine surgery. Spine (Phila Pa 1976) 35(9 Suppl):S76–S85

    Article  Google Scholar 

  24. Wupperman R, Davis R, Obremskey WT (2007) Level of evidence in spine compared to other orthopedic journals. Spine 32(3):388–393

    Article  PubMed  Google Scholar 

  25. Park YS, Nakase H, Kawaguchi S, Sakaki T, Nikaido Y, Morimoto T (2006) Predictors of outcome of surgery for cervical compressive myelopathy: retrospective analysis and prospective study. Neurol Med Chir (Tokyo) 46(5):231–238

    Article  Google Scholar 

  26. Papadopoulos C, Katonis P, Papagelopoulos P, Karampekios S, Hadjipavlou A (2004) Surgical decompression for cervical spondylotic myelopathy: correlation between operative outcomes and MRI of the spinal cord. Orthopedics 27(10):1087–1091

    PubMed  Google Scholar 

  27. Shen HX, Li L, Yang ZG, Hou TS (2009) Position of increased signal intensity in the spinal cord on MR images: does it predict the outcome of cervical spondylotic myelopathy? Chin Med J (Engl) 122(12):1418–1422

    Google Scholar 

  28. Mehalic TF, Pezzuti RT, Applebaum BI (1990) Magnetic resonance imaging and cervical spondylotic myelopathy. Neurosurgery 26(2):217–226 discussion 226–217

    Article  PubMed  CAS  Google Scholar 

  29. Mizuno J, Nakagawa H, Inoue T, Hashizume Y (2003) Clinicopathological study of “snake-eye appearance” in compressive myelopathy of the cervical spinal cord. J Neurosurg Spine 99(2):162–168

    Article  Google Scholar 

  30. Singh A, Crockard HA, Platts A, Stevens J (2001) Clinical and radiological correlates of severity and surgery-related outcome in cervical spondylosis. J Neurosurg 94(2 Suppl):189–198

    PubMed  CAS  Google Scholar 

  31. Wada E, Ohmura M, Yonenobu K (1995) Intramedullary changes of the spinal cord in cervical spondylotic myelopathy. Spine (Phila Pa 1976) 20(20):2226–2232

    Article  CAS  Google Scholar 

  32. Yagi M, Ninomiya K, Kihara M, Horiuchi Y (2010) Long-term surgical outcome and risk factors in patients with cervical myelopathy and a change in signal intensity of intramedullary spinal cord on magnetic resonance imaging. J Neurosurg Spine 12(1):59–65

    Article  PubMed  Google Scholar 

  33. Ahn JS, Lee JK, Kim BK (2010) Prognostic factors that affect the surgical outcome of the laminoplasty in cervical spondylotic myelopathy. Clin Orthop Surg 2(2):98–104

    Article  PubMed  Google Scholar 

  34. Shin J, Jin B, Kim K, Cho Y, Cho W (2010) Intramedullary high signal intensity and neurological status as prognostic factors in cervical spondylotic myelopathy. Acta Neurochir 152(10):1687–1694

    Article  Google Scholar 

  35. Yukawa Y, Kato F, Ito K, Horie Y, Hida T, Machino M, Ito ZY, Matsuyama Y (2008) Postoperative changes in spinal cord signal intensity in patients with cervical compression myelopathy: comparison between preoperative and postoperative magnetic resonance images. J Neurosurg Spine 8(6):524–528

    Article  PubMed  Google Scholar 

  36. Arvin B, Kalsi-Ryan S, Karpova A, Mercier D, Furlan JC, Massicotte EM, Fehlings MG (2011) Post-operative magnetic resonance imaging can predict neurological recovery following surgery for cervical spondylotic myelopathy: a prospective study with blinded assessments. Neurosurgery 69(2):362–368

    Article  PubMed  Google Scholar 

  37. Kohno K, Kumon Y, Oka Y, Matsui S, Ohue S, Sakaki S (1997) Evaluation of prognostic factors following expansive laminoplasty for cervical spinal stenotic myelopathy. Surg Neurol 48(3):237

    Article  PubMed  CAS  Google Scholar 

  38. Zhang YZ, Shen Y, Wang LF, Ding WY, Xu JX, He J (2010) Magnetic resonance T2 image signal intensity ratio and clinical manifestation predict prognosis after surgical intervention for cervical spondylotic myelopathy. Spine (Phila Pa 1976) 35(10):E396–E399

    Google Scholar 

  39. Benzel EC, Lancon J, Kesterson L, Hadden T (1991) Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. J Spinal Disord 4(3):286–295

    Article  PubMed  CAS  Google Scholar 

  40. Hirabayashi K, Miyakawa J, Satomi K, Maruyama T, Wakano K (1981) Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine (Phila Pa 1976) 6(4):354–364

    Article  CAS  Google Scholar 

  41. Al-Mefty O, Harkey LH, Middleton TH, Smith RR, Fox JL (1988) Myelopathic cervical spondylotic lesions demonstrated by magnetic resonance imaging. J Neurosurg 68(2):217–222

    Article  PubMed  CAS  Google Scholar 

  42. Ohshio I, Hatayama A, Kaneda K, Takahara M, Nagashima K (1993) Correlation between histopathologic features and magnetic resonance images of spinal cord lesions. Spine (Phila Pa 1976) 18(9):1140–1149

    Article  CAS  Google Scholar 

  43. Faiss J, Schroth G, Grodd W, Koenig E, Will B, Thron A (1990) Central spinal cord lesions in stenosis of the cervical canal. Neuroradiology 32(2):117–123

    Article  PubMed  CAS  Google Scholar 

  44. Ramanauskas WL, Wilner HI, Metes JJ, Lazo A, Kelly JK (1989) MR imaging of compressive myelomalacia. J Comput Assist Tomogr 13(3):399–404

    Article  PubMed  CAS  Google Scholar 

  45. Choi S, Lee SH, Lee JY, Choi WG, Choi WC, Choi G, Jung B, Lee SC (2005) Factors affecting prognosis of patients who underwent corpectomy and fusion for treatment of cervical ossification of the posterior longitudinal ligament: analysis of 47 patients. J Spinal Disord Tech 18(4):309–314

    Article  PubMed  Google Scholar 

  46. Srinivasa Rao NV, Rajshekhar V (2009) Distal-type cervical spondylotic amyotrophy: incidence and outcome after central corpectomy. J Neurosurg Spine 10(4):374–379

    Article  PubMed  Google Scholar 

  47. Fujiwara Y, Tanaka N, Fujimoto Y, Nakanishi K, Kamei N, Ochi M (2006) Surgical outcome of posterior decompression for cervical spondylosis with unilateral upper extremity amyotrophy. Spine (Phila Pa 1976) 31(20):E728–E732

    Article  Google Scholar 

  48. Kameyama T, Ando T, Yanagi T, Yasui K, Sobue G (1998) Cervical spondylotic amyotrophy. Magnetic resonance imaging demonstration of intrinsic cord pathology. Spine (Phila Pa 1976) 23(4):448–452

    Article  CAS  Google Scholar 

  49. Rajshekhar V, Kumar GS (2005) Functional outcome after central corpectomy in poor-grade patients with cervical spondylotic myelopathy or ossified posterior longitudinal ligament. Neurosurgery 56(6):1279–1284

    Article  PubMed  Google Scholar 

  50. Okada Y, Ikata T, Yamada H, Sakamoto R, Katoh S (1993) Magnetic resonance imaging study on the results of surgery for cervical compression myelopathy. Spine (Phila Pa 1976) 18(14):2024–2029

    Article  CAS  Google Scholar 

  51. Koyanagi T, Hirabayashi K, Satomi K, Toyama Y, Fujimura Y (1993) Predictability of operative results of cervical compression myelopathy based on preoperative computed tomographic myelography. Spine (Phila Pa 1976) 18(14):1958–1963

    Article  CAS  Google Scholar 

  52. Matz PG, Anderson PA, Kaiser MG, Holly LT, Groff MW, Heary RF, Mummaneni PV, Ryken TC, Choudhri TF, Vresilovic EJ (2009) Introduction and methodology: guidelines for the surgical management of cervical degenerative disease. J Neurosurg Spine 11(2):101–103

    Article  PubMed  Google Scholar 

  53. Ozawa H, Sato T, Hyodo H, Ishii Y, Morozumi N, Koizumi Y, Matsumoto F, Kasama F, Aizawa T, Itoi E, Kokubun S (2010) Clinical significance of intramedullary Gd-DTPA enhancement in cervical myelopathy. Spinal Cord 48(5):415–422

    Article  PubMed  CAS  Google Scholar 

  54. Cho YE, Shin JJ, Kim KS, Chin DK, Kuh SU, Lee JH, Cho WH (2011) The relevance of intramedullary high signal intensity and gadolinium (Gd-DTPA) enhancement to the clinical outcome in cervical compressive myelopathy. Eur Spine J 20(12):2267–2274

    Article  PubMed  Google Scholar 

  55. Alafifi T, Kern R, Fehlings M (2007) Clinical and MRI predictors of outcome after surgical intervention for cervical spondylotic myelopathy. J Neuroimaging 17(4):315–322

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Y-z, Wang L-f, Shen Y, Ding WY, Xu JX, He J (2009) The effects of MRI signal intensity changes and clinical manifestations on prognosis after surgical intervention for cervical spondylotic myelopathy. Orthop Surg 1(2):101–106

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors report no conflict of interest. No funding or grants were received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedantam Rajshekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedantam, A., Rajshekhar, V. Does the type of T2-weighted hyperintensity influence surgical outcome in patients with cervical spondylotic myelopathy? A review. Eur Spine J 22, 96–106 (2013). https://doi.org/10.1007/s00586-012-2483-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2483-9

Keywords

Navigation