Skip to main content
Log in

The impact of a corrective tether on a scoliosis porcine model: a detailed 3D analysis with a 20 weeks follow-up

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Non-fusion treatment for adolescent idiopathic scoliosis generates interest due to the potential for growth preservation and mobility. Using an established porcine scoliotic model, this study aims to evaluate the global alignment and the morphology of the spine with and without application of a non-fusion corrective tether.

Methods

At 12 weeks of age, 21 immature Yorkshire pigs had an induction of scoliosis. Once a 50° Cobb angle was obtained; animals were placed into one of the following groups: a scoliosis model group (SM, n = 11) where animals were euthanized, tether release group (TR, n = 5) where the inducing tether was removed, and an anterior correction group (AC, n = 5) where the inducing tether was removed and non-fusion corrective tether was applied. TR and AC were observed for a further 20 weeks and then euthanized. Post-mortem CT scans were used to create 3D spinal reconstructions to obtain global and morphologic parameters.

Results

Maximal Cobb angle of the scoliotic deformity was significantly lower for AC (27.9° ± 12.0°) than for the two other groups (TR 52.7° ± 10.0°, SM 48.3° ± 7.6°). AC experienced an increase in kyphosis (24.2° ± 15.9°) compared to TR (7.1° ± 6.4°). Correction in the axial plane was also observed in AC versus TR. Correction of vertebral wedging was found for AC compared to SM and TR in the three apical vertebrae.

Conclusions

3D realignment of scoliotic curves was observed with application of the corrective tether. The correction was the product of both mechanical action and growth modulation. These findings are encouraging for future development of a non-fusion device for the treatment of immature scoliotic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dubousset J (2001) Scoliosis and its pathophysiology: do we understand it? Spine 26:1001

    Article  PubMed  CAS  Google Scholar 

  2. Graf H, Hecquet J, Dubousset J (1983) 3-dimensional approach to spinal deformities. Application to the study of the prognosis of pediatric scoliosis. Rev Chir Orthop Reparatrice Appar Mot 69:407–416

    PubMed  CAS  Google Scholar 

  3. Stokes IA, Dansereau J, Moreland MS (1989) Rib cage asymmetry in idiopathic scoliosis. J Orthop Res 7:599–606. doi:10.1002/jor.1100070419

    Article  PubMed  CAS  Google Scholar 

  4. Chun EM, Suh SW, Modi HN, Kang EY, Hong SJ, Song HR (2008) The change in ratio of convex and concave lung volume in adolescent idiopathic scoliosis: a 3D CT scan based cross sectional study of effect of severity of curve on convex and concave lung volumes in 99 cases. Eur Spine J 17:224–229. doi:10.1007/s00586-007-0488-6

    Article  PubMed  Google Scholar 

  5. Takahashi S, Suzuki N, Asazuma T, Kono K, Ono T, Toyama Y (2007) Factors of thoracic cage deformity that affect pulmonary function in adolescent idiopathic thoracic scoliosis. Spine (Phila Pa 1976) 32:106–112. doi:10.1097/01.brs.0000251005.31255.25

    Article  Google Scholar 

  6. Betz RR, Kim J, D’Andrea LP, Mulcahey MJ, Balsara RK, Clements DH (2003) An innovative technique of vertebral body stapling for the treatment of patients with adolescent idiopathic scoliosis: a feasibility, safety, and utility study. Spine 28:S255–S265

    Article  PubMed  Google Scholar 

  7. Braun JT, Akyuz E, Ogilvie JW, Bachus KN (2005) The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis. J Bone Joint Surg Am 87:2038–2051. doi:10.2106/JBJS.D.02103

    Article  PubMed  Google Scholar 

  8. Bylski-Austrow DI, Wall EJ, Glos DL, Ballard ET, Montgomery A, Crawford AH (2009) Spinal hemiepiphysiodesis decreases the size of vertebral growth plate hypertrophic zone and cells. J Bone Joint Surg Am 91:584–593. doi:10.2106/JBJS.G.01256

    Article  PubMed  Google Scholar 

  9. Crawford CH 3rd, Lenke LG (2010) Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: a case report. J Bone Joint Surg Am 92:202–209. doi:10.2106/JBJS.H.01728

    Article  PubMed  Google Scholar 

  10. Lowe TG, Wilson L, Chien JT, Line BG, Klopp L, Wheeler D, Molz F (2005) A posterior tether for fusionless modulation of sagittal plane growth in a sheep model. Spine 30:S69–S74

    Article  PubMed  Google Scholar 

  11. Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, Breisch E, Fricka K, Upasani VV, Amiel D (2008) Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine 33:724–733

    Article  PubMed  Google Scholar 

  12. Schmid EC, Aubin CE, Moreau A, Sarwark J, Parent S (2008) A novel fusionless vertebral physeal device inducing spinal growth modulation for the correction of spinal deformities. Eur Spine J 17:1329–1335. doi:10.1007/s00586-008-0723-9

    Article  PubMed  Google Scholar 

  13. Luk KD, Vidyadhara S, Lu DS, Wong YW, Cheung WY, Cheung KM (2010) Coupling between sagittal and frontal plane deformity correction in idiopathic thoracic scoliosis and its relationship with postoperative sagittal alignment. Spine (Phila Pa 1976) 35:1158–1164. doi:10.1097/BRS.0b013e3181bb49f3

    Article  Google Scholar 

  14. Sucato DJ, Agrawal S, O’Brien MF, Lowe TG, Richards SB, Lenke L (2008) Restoration of thoracic kyphosis after operative treatment of adolescent idiopathic scoliosis: a multicenter comparison of three surgical approaches. Spine (Phila Pa 1976) 33:2630–2636. doi:10.1097/BRS.0b013e3181880498

    Article  Google Scholar 

  15. Busscher I, Ploegmakers JJ, Verkerke GJ, Veldhuizen AG (2010) Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19:1104–1114. doi:10.1007/s00586-010-1326-9

    Article  PubMed  Google Scholar 

  16. Patel A, Schwab F, Lafage V et al (2010) Progressive spinal deformity correction via an anterior based tether in a porcine scoliosis model: a detailed radiographic analysis in IMAST. Toronto, CA

    Google Scholar 

  17. Patel A, Schwab F, Lafage V, Obeidat MM, Farcy JP (2010) Computed tomographic validation of the porcine model for thoracic scoliosis. Spine (Phila Pa 1976) 35:18–25. doi:10.1097/BRS.0b013e3181b79169

    Article  Google Scholar 

  18. Semaan I, Skalli W, Veron S, Templier A, Lassau JP, Lavaste F (2001) Quantitative 3D anatomy of the lumbar spine. Rev Chir Orthop Reparatrice Appar Mot 87:340–353

    PubMed  CAS  Google Scholar 

  19. Stokes IA (1994) Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phila Pa 1976) 19:236–248

  20. Busscher I, Wapstra FH, Veldhuizen AG (2010) Predicting growth and curve progression in the individual patient with adolescent idiopathic scoliosis: design of a prospective longitudinal cohort study. BMC Musculoskelet Disord 11:93. doi:10.1186/1471-2474-11-93

    Article  PubMed  Google Scholar 

  21. Drevelle X, Dubousset J, Lafon Y, Ebermeyer E, Skalli W (2008) Analysis of the mechanisms of idiopathic scoliosis progression using finite element simulation. Stud Health Technol Inf 140:85–89

    CAS  Google Scholar 

  22. Ward K, Ogilvie JW, Singleton MV, Chettier R, Engler G, Nelson LM (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35:E1455–E1464. doi:10.1097/BRS.0b013e3181ed2de1

    Article  Google Scholar 

  23. Lavelle WF, Samdani AF, Cahill PJ, Betz RR (2011) Clinical outcomes of nitinol staples for preventing curve progression in idiopathic scoliosis. J Pediatr Orthop 31:S107–S113. doi:10.1097/BPO.0b013e3181ff9a4d

    Article  PubMed  Google Scholar 

  24. Yang JS, McElroy MJ, Akbarnia BA, Salari P, Oliveira D, Thompson GH, Emans JB, Yazici M, Skaggs DL, Shah SA, Kostial PN, Sponseller PD (2010) Growing rods for spinal deformity: characterizing consensus and variation in current use. J Pediatr Orthop 30:264–270. doi:10.1097/BPO.0b013e3181d40f94

    Article  PubMed  Google Scholar 

  25. McLain RF, Yerby SA, Moseley TA (2002) Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine (Phila Pa 1976) 27:E200–E206

    Google Scholar 

  26. Sheng SR, Wang XY, Xu HZ, Zhu GQ, Zhou YF (2010) Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J 19:46–56. doi:10.1007/s00586-009-1192-5

    Article  PubMed  Google Scholar 

  27. Dimeglio A, Canavese F (2012) The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J 21:64–70. doi:10.1007/s00586-011-1983-3

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Lafage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moal, B., Schwab, F., Demakakos, J. et al. The impact of a corrective tether on a scoliosis porcine model: a detailed 3D analysis with a 20 weeks follow-up. Eur Spine J 22, 1800–1809 (2013). https://doi.org/10.1007/s00586-013-2743-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-2743-3

Keywords

Navigation