Skip to main content

Advertisement

Log in

Multifidus innervation and muscle assessment post-spinal surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Assessment of the integrity of the multifidus muscles and corresponding nerve roots, post-open (OSS) versus minimally invasive spinal surgery (MISS) for lumbar spine fractures.

Methods

We investigated the first six patients undergoing MISS in our institution and age- and sex-matched them with 6 random patients who previously had OSS. All had a similar lumbar fracture configuration without evidence of spinal cord injury. All were assessed using ultrasound muscle quantification and electromyographic studies at a minimum of 6 months post-operatively. Mean cross-sectional area (CSA) was measured at sequential levels within and adjacent to the operative field. Concentric needle electromyography was performed at instrumented and adjacent non-instrumented levels in each patient.

Results

Mean CSA across all lumbar multifidus muscles was 4.29 cm2 in the MISS group, 2.26 cm2 for OSS (p = 0.08). At the instrumented levels, mean CSA was 4.21 cm2 for MISS and 2.03 cm2 for OSS (p = 0.12). At non-instrumented adjacent levels, mean CSA was 4.46 cm2 in the MISS group, 2.87 cm2 for OSS (p = 0.05).

Electromyography at non-instrumented adjacent levels demonstrated nerve function within normal limits in 5/6 levels in the MISS group compared to 1/6 levels in the OSS (p = 0.03). Instrumented levels demonstrated nerve function within normal limits in 5/12 levels in the MISS group compared with 4/12 in the OSS group, including moderate–severe denervation at 5 levels in the OSS group (p = 0.15).

Conclusions

Posterior instrumented MISS demonstrates a significantly superior preservation of the medial branch of the posterior ramus of the spinal nerve and less muscle atrophy, particularly at adjacent levels when compared to OSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. MacDonald DA, Moseley GL, Hodges PW (2006) The lumbar multifidus: does the evidence support clinical beliefs? Man Ther 11(4):254–263

    Article  PubMed  Google Scholar 

  2. Macintosh J, Valencia F, Bogduk N et al (1986) The morphology of the human lumbar multifidus. Clin Biomech 1(4):196–204

    Article  CAS  Google Scholar 

  3. Rantanen J, Hurme M, Falck B et al (1993) The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine 18:568–574

    Article  CAS  PubMed  Google Scholar 

  4. Sihvonen T, Herno A, Paljiarvi L et al (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine 18:575–581

    Article  CAS  PubMed  Google Scholar 

  5. Gejo R, Matsui H, Kawaguchi Y et al (1999) Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 24:1023–1028

    Article  CAS  PubMed  Google Scholar 

  6. Weinstein JN, Rydevik BL, Rauschning W (1992) Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res 284:34–46

    PubMed  Google Scholar 

  7. Styf JR, Willen J (1998) The effects of external compression by three different retractors on pressure in the erector spine muscles during and after posterior lumbar spine surgery in humans. Spine 23:354–358

    Article  CAS  PubMed  Google Scholar 

  8. Nagayama R, Nakamura H, Yamano Y et al (2000) An experimental study of the effects of nerve root retraction on the posterior ramus. Spine (Phila Pa 1976) 25(4):418–424

    Article  CAS  Google Scholar 

  9. Kim KT, Lee SH, Suk KS et al (2006) The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976) 31(6):712–716

    Article  Google Scholar 

  10. Rahman M, Summers LE, Richter B et al (2008) Comparison of techniques for decompressive lumbar laminectomy: the minimally invasive versus the “classic” open approach. Minim Invasive Neurosurg 51(2):100–105

    Article  CAS  PubMed  Google Scholar 

  11. McGirt MJ, Parker SL, Lerner J et al (2011) Comparative analysis of perioperative surgical site infection after minimally invasive versus open posterior/transforaminal lumbar interbody fusion: analysis of hospital billing and discharge data from 5170 patients. J Neurosurg Spine 14(6):771–778

    Article  PubMed  Google Scholar 

  12. Hides JA, Cooper DH, Stokes MJ (1992) Diagnostic ultrasound imaging for measurement of the lumbar multifidus muscle in normal young adults. Physiother Theory Pract 8(1):19–26

    Google Scholar 

  13. Haig AJ, Moffroid M, Henry S et al (1991) A technique for needle localization in paraspinal muscles with cadaveric confirmation. Muscle Nerve 14(6):521–526

    Article  CAS  PubMed  Google Scholar 

  14. Hides J, Gilmore C, Stanton W et al (2008) Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Man Ther 13(1):43–49

    Article  PubMed  Google Scholar 

  15. Payer M (2011) “Minimally invasive” lumbar spine surgery: a critical review. Acta Neurochir (Wien) 153(7):1455–1459

    Article  Google Scholar 

  16. Foley KT, Lefkowitz MA (2002) Advances in minimally invasive spine surgery. Clin Neurosurg 49:499–517

    PubMed  Google Scholar 

  17. Mobbs RJ, Sivabalan P, Li J (2011) Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci 18(6):741–749

    Article  PubMed  Google Scholar 

  18. Koppenhaver SL, Hebert JJ, Fritz JM et al (2009) Reliability of rehabilitative ultrasound imaging of the transversus abdominis and lumbar multifidus muscles. Arch Phys Med Rehabil 90(1):87–94

    PubMed  Google Scholar 

  19. Hebert JJ, Koppenhaver SL, Parent EC et al (2009) A systematic review of the reliability of rehabilitative ultrasound imaging for the quantitative assessment of the abdominal and lumbar trunk muscles. Spine (Phila Pa 1976) 34(23):E848–E856

    Article  Google Scholar 

  20. Wallwork TL, Hides JA, Stanton WR (2007) Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging. J Orthop Sports Phys Ther 37(10):608–612

    Article  PubMed  Google Scholar 

  21. Haig AJ, LeBreck DB, Powley SG (1995) Paraspinal mapping. Quantified needle electromyography of the paraspinal muscles in persons without low back pain. Spine (Phila Pa 1976) 20(6):715–721

    Article  CAS  Google Scholar 

  22. Haig AJ, Talley C, Grobler LJ et al (1993) Paraspinal mapping: quantified needle electromyography in lumbar radiculopathy. Muscle Nerve 16(5):477–484

    Article  CAS  PubMed  Google Scholar 

  23. Regev GJ, Lee YP, Taylor WR et al (2009) Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine (Phila Pa 1976) 34(11):1239–1242

    Article  Google Scholar 

  24. Kim DY, Lee SH, Chung SK et al (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976) 30(1):123–129

    Article  Google Scholar 

  25. Li C, Xu HZ, Wang XY et al (2007) Comparison of the paraspinal muscle change of percutaneous and open pedicle screw fixation in the treatment for thoracolumbar fractures. Zhonghua Wai Ke Za Zhi 45(14):972–975 (In Chinese)

    PubMed  Google Scholar 

  26. Kawaguchi Y, Matsui H, Tsuji H (1996) Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine (Phila Pa 1976) 21(8):941–944

    Article  CAS  Google Scholar 

  27. Datta G, McGregor A, Medhi-Zadeh S et al (2010) The impact of intermittent retraction on paraspinal muscle function during lumbar surgery. Spine (Phila Pa 1976) 35(20):E1050–E1057

    Article  Google Scholar 

  28. Mannion AF, Denzler R, Dvorak J et al (2007) A randomised controlled trial of post-operative rehabilitation after surgical decompression of the lumbar spine. Eur Spine J 16(8):1101–1117

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mannion AF, Müntener M, Taimela S et al (2001) Comparison of three active therapies for chronic low back pain: results of a randomized clinical trial with one-year follow-up. Rheumatology 40(7):772–778 (Oxford)

    Article  CAS  PubMed  Google Scholar 

  30. Sanderson PL, Fraser RD, Hall DJ et al (1999) Short segment fixation of thoracolumbar burst fractures without fusion. Eur Spine J 8(6):495–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dai LY, Jiang LS, Jiang SD (2009) Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures. a five to seven-year prospective randomized study. J Bone Joint Surg Am 91(5):1033–1041

    Article  PubMed  Google Scholar 

  32. Hyun SJ, Kim YB, Kim YS et al (2007) Postoperative changes in paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci 22(4):646–651

    Article  PubMed Central  PubMed  Google Scholar 

  33. Stevens KJ, Spenciner DB, Griffiths KL et al (2006) Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 19(2):77–86

    Article  PubMed  Google Scholar 

  34. Wood K, Buttermann G, Mehbod A et al (2003) Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am 85(5):773–781

    PubMed  Google Scholar 

  35. McCormack T, KaraiKovic E, Gaines W (1994) The load sharing classification of spine fracture. Spine 19(15):1741–1744

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Medtronic for funding of co-authors to attend conference. The results of this study were presented at Britspine 2012 and Spineweek 2012.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek T. Cawley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cawley, D.T., Alexander, M. & Morris, S. Multifidus innervation and muscle assessment post-spinal surgery. Eur Spine J 23, 320–327 (2014). https://doi.org/10.1007/s00586-013-2962-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-2962-7

Keywords

Navigation