Skip to main content
Log in

Morphological studies of cartilage endplates in subaxial cervical region

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to provide morphological data of endplates for the redesign of cervical artificial disc for use in the middle and lower cervical spine (C3–C7).

Methods

Reformatted CT scans of 73 individuals were analysed. The shapes of superior endplates (SEPs) and inferior endplates (IEPs) were classified as either flat or arced. The curvature radius of the IEP and sagittal disc angle were measured in the mid-sagittal plane. The maximum transverse diameter (MTD) of the SEPs and IEP was measured in the coronal plane.

Results

The majority of SEPs were flat (79.5 % at C7 and 91.8–95.9 % at C3–C6). Almost all (98.6–100 %) IEPs were arced. The curvature radius has a gradually increasing trend from C3 to C6 (P < 0.05, mean 29.26 mm). There were significant differences at C3–C7 in the average sagittal disc angles (5.80°, 6.92°, 7.51°, and 8.82°, respectively; P < 0.05; mean 7.26°), the average MTDs of the SEPs (13.64, 14.42, 15.03, and 16.74 mm, respectively, P < 0.05; mean 14.96 mm) and the average MTD of the IEPs (16.77, 17.67, 19.15, and 21.66 mm, respectively; P < 0.05; mean 18.81 mm).

Conclusion

The majority of SEPs were flat, while almost all IEPs were curved. The curvature radius of IEPs has a gradually increasing trend from C3 to C6. The average sagittal disc angles, MTDs of the SEPs and IEPs significantly increased from C3 to C7. Based on the above, the current cervical artificial disc design does not sufficiently match the morphology of cervical endplates (CEPs). This mismatch may lead to some postoperative complications of cervical disc arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu JC (2014) Cervical total disc replacement. Formos J Surg 47:49–52

    Article  Google Scholar 

  2. Luo J, Gong M, Huang S, Yu T, Zou X (2015) Incidence of adjacent segment degeneration in cervical disc arthroplasty versus anterior cervical decompression and fusion meta-analysis of prospective studies. Arch Orthop Trauma Surg 135:155–160

    Article  PubMed  Google Scholar 

  3. Bentley J, Googe M, Seibly J (2013) Cervical artificial disc replacement. Tech Reg Anesth Pain Manag 17:32–35

    Article  Google Scholar 

  4. Zechmeister I, Winkler R, Mad P (2011) Artificial total disc replacement versus fusion for the cervical spine: a systematic review. Eur Spine J 20:177–184

    Article  PubMed  Google Scholar 

  5. Cao JM, Zhang YZ, Shen Y, Ding WY (2010) Complications of Bryan cervical disc replacement. Orthop Surg 2:86–93

    Article  PubMed  Google Scholar 

  6. Lin CY, Kang H, Rouleau JP, Hollister SJ, La Marca F (2009) Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study. Spine 34:1554–1560

    Article  PubMed  Google Scholar 

  7. Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S (2012) Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord 13:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chou YC, Chen DC, Hsieh WA, Chen WF, Yen PS, Harnod T, Chen SY (2008) Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci 15:1240–1245

    Article  CAS  PubMed  Google Scholar 

  9. Barsa P, Suchomel P (2007) Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Eur Spine J 16:1395–1400

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buttermann GR, Beaubien BP, Freeman AL, Stoll JE, Chappuis JL (2009) Interbody device endplate engagement effects on motion segment biomechanics. Spine J 9:564–573

    Article  PubMed  Google Scholar 

  11. Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175

    Article  CAS  PubMed  Google Scholar 

  12. Cheng CC, Ordway NR, Zhang X, Lu YM, Fang H, Fayyazi AH (2007) Loss of cervical endplate integrity following minimal surface preparation. Spine 32:1852–1855

    Article  PubMed  Google Scholar 

  13. Lowe TG, Hashim S, Wilson LA, O’Brien MF, Smith DA, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 29:2389–2394

    Article  PubMed  Google Scholar 

  14. Gilad I, Nissan M (1985) Sagittal evaluation of elemental geometrical dimensions of human vertebrae. J Anat 143:115

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim MK, Kwak DS, Park CK, Park SH, Oh SM, Lee SW, Han SH (2007) Quantitative anatomy of the endplate of the middle and lower cervical vertebrae in Koreans. Spine 32:E376–E381

    Article  PubMed  Google Scholar 

  16. Thaler M, Hartmann S, Gstöttner M, Lechner R, Gabl M, Bach C (2013) Footprint mismatch in total cervical disc arthroplasty. Eur Spine J 22:759–765

    Article  PubMed  Google Scholar 

  17. Michaela G, Denise H, Liebensteiner M, Michael BC (2008) Footprint mismatch in lumbar total disc arthroplasty. Eur Spine J 17:1470–1475

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dong L, Tan MS, Yan QH, Yi P, Yang F, Tang XS, Hao QY (2015) Footprint mismatch of cervical disc prostheses with Chinese cervical anatomic dimensions. Chin Med J 128:197

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lakshmanan P, Purushothaman B, Dvorak V, Schratt W, Thambiraj S, Boszczyk BM (2012) Sagittal endplate morphology of the lower lumbar spine. Eur Spine J 21:160–164

    Article  PubMed Central  Google Scholar 

  20. Van der Houwen EB, Baron P, Veldhuizen AG, Burgerhof JGM, Van Ooijen PMA, Verkerke GJ (2010) Geometry of the intervertebral volume and vertebral endplates of the human spine. Ann Biomed Eng 38:33–40

    Article  PubMed  Google Scholar 

  21. Ding Y, Jiang J, Zhou J et al (2014) The effects of osteoporosis and disc degeneration on vertebral cartilage endplate lesions in rats. Eur Spine J 23(9):1848–1855

    Article  PubMed  Google Scholar 

  22. Chen H, Zhong J, Tan J, Wu D, Jiang D (2013) Sagittal geometry of the middle and lower cervical endplates. Eur Spine J 22:1570–1575

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hartman J (2014) Anatomy and clinical significance of the uncinate process and uncovertebral joint: a comprehensive review. Clin Anat 27:431–440

    Article  PubMed  Google Scholar 

  24. Tulsi RS, Perrett LV (1975) The anatomy and radiology of the cervical vertebrae and the tortuous vertebral artery. Australas Radiol 19:258–264

    Article  CAS  PubMed  Google Scholar 

  25. Briot K, Kolta S, Fechtenbaum J, Said-Nahal R, Benhamou CL, Roux C (2010) Increase in vertebral body size in postmenopausal women with osteoporosis. Bone 47:229–234

    Article  CAS  PubMed  Google Scholar 

  26. Bae WC, Statum S, Zhang Z et al (2013) Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 266(2):564–574

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingjun Hao.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Hao, D., Jiang, Y. et al. Morphological studies of cartilage endplates in subaxial cervical region. Eur Spine J 25, 2218–2222 (2016). https://doi.org/10.1007/s00586-015-4336-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4336-9

Keywords

Navigation