Skip to main content
Log in

Adjacent segment motion following multi-level ACDF: a kinematic and clinical study in patients with zero-profile anchored spacer or plate

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the adjacent segment kinematics, including the instantaneous axis of rotation (IAR) and range of motion (ROM), after anterior cervical discectomy and fusion (ACDF), and to compare between ACDF with zero-profile anchored spacer (ACDF-Z) and ACDF with plate (ACDF-P).

Methods

Eighty-seven patients (ACDF-Z = 63; ACDF-P = 24) were included. Flexion, extension and neutral cervical radiographs were obtained before operation and at 1-year follow-up. C2–C7 ROM, adjacent segment ROMs, and IARs were measured. Clinical evaluation was based on the Visual Analogue Scale, Neck Disability Index, and Japanese Orthopaedic Association score.

Results

After ACDF-Z, location of the superior IAR-AP reduced 1.60 mm, which represents 8% of the vertebral body (P < 0.001), and location of the inferior IAR-SI reduced 2.19 mm, 17% of the vertebral body (P = 0.02). After ACDF-P, location of the superior IAR-AP increased 0.8 mm, which means 6% of the vertebral body (P = 0.008), location of the inferior IAR-AP increased 3.34 mm, 22% of the vertebral body (P = 0.03), and location of the inferior IAR-SI reduced 3.14 mm, 25% of the vertebral body (P = 0.002). C2–C7 ROM significantly decreased after both ACDF-Z and ACDF-P (P < 0.001). Neither ACDF-Z nor ACDF-P significantly affected the adjacent segment ROMs (P > 0.05).

Conclusions

Both ACDF-Z and ACDF-P significantly impacted cervical kinematics, although both procedures obtained satisfactory clinical results in the treatment of cervical spondylosis. After both ACDF-Z and ACDF-P, C2–C7 ROM decreased significantly, while adjacent segment ROMs were preserved. ACDF-Z and ACDF-P impact the location of adjacent segment IAR-SI in similar way, while impact the location of adjacent segment IAR-AP in diverse ways.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miller LE, Block JE (2011) Safety and effectiveness of bone allografts in anterior cervical discectomy and fusion surgery. Spine 36(24):2045–2050. https://doi.org/10.1097/BRS.0b013e3181ff37eb

    Article  PubMed  Google Scholar 

  2. Jacobs W, Willems PC, van Limbeek J, Bartels R, Pavlov P, Anderson PG, Oner C (2011) Single or double-level anterior interbody fusion techniques for cervical degenerative disc disease. Cochrane Database Syst Rev 2011(1):Cd004958. https://doi.org/10.1002/14651858.CD004958.pub2

    Article  Google Scholar 

  3. Jacobs W, Willems PC, Kruyt M, van Limbeek J, Anderson PG, Pavlov P, Bartels R, Oner C (2011) Systematic review of anterior interbody fusion techniques for single-and double-level cervical degenerative disc disease. Spine 36(14):E950–E960. https://doi.org/10.1097/BRS.0b013e31821cbba5

    Article  PubMed  Google Scholar 

  4. Hacker RJ, Cauthen JC, Gilbert TJ, Griffith SL (2000) A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine 25(20):2646–2654

    Article  CAS  Google Scholar 

  5. Thome C, Leheta O, Krauss JK, Zevgaridis D (2006) A prospective randomized comparison of rectangular titanium cage fusion and iliac crest autograft fusion in patients undergoing anterior cervical discectomy. J Neurosurg Spine 4(1):1–9. https://doi.org/10.3171/spi.2006.4.1.1

    Article  PubMed  Google Scholar 

  6. Smith MW, Romano DR, McEntire BJ, Bal BS (2018) A single center retrospective clinical evaluation of anterior cervical discectomy and fusion comparing allograft spacers to silicon nitride cages. J Spine Surg (Hong Kong) 4(2):349–360. https://doi.org/10.21037/jss.2018.06.02

    Article  Google Scholar 

  7. Lee YS, Kim YB, Park SW (2015) Does a zero-profile anchored cage offer additional stabilization as anterior cervical plate? Spine 40(10):E563–E570. https://doi.org/10.1097/brs.0000000000000864

    Article  PubMed  Google Scholar 

  8. Prasarn ML, Baria D, Milne E, Latta L, Sukovich W (2012) Adjacent-level biomechanics after single versus multilevel cervical spine fusion. J Neurosurg Spine 16(2):172–177. https://doi.org/10.3171/2011.10.Spine11116

    Article  PubMed  Google Scholar 

  9. Li Y, Shen H, Khan KZ, Fang S, Liao Z, Liu W (2018) Comparison of multilevel cervical disc replacement and multilevel anterior discectomy and fusion: a systematic review of biomechanical and clinical evidence. World Neurosurg 116:94–104. https://doi.org/10.1016/j.wneu.2018.05.012

    Article  PubMed  Google Scholar 

  10. Chung JY, Kim SK, Jung ST, Lee KB (2014) Clinical adjacent-segment pathology after anterior cervical discectomy and fusion: results after a minimum of 10-year follow-up. Spine J 14(10):2290–2298. https://doi.org/10.1016/j.spinee.2014.01.027

    Article  PubMed  Google Scholar 

  11. Frobin W, Leivseth G, Biggemann M, Brinckmann P (2002) Sagittal plane segmental motion of the cervical spine. A new precision measurement protocol and normal motion data of healthy adults. Clin Biomech (Bristol, Avon) 17(1):21–31

    Article  CAS  Google Scholar 

  12. Cho BY, Lim J, Sim HB, Park J (2010) Biomechanical analysis of the range of motion after placement of a two-level cervical ProDisc-C versus hybrid construct. Spine 35(19):1769–1776. https://doi.org/10.1097/BRS.0b013e3181c225fa

    Article  PubMed  Google Scholar 

  13. Liu B, Wu B, Van Hoof T, Okito JP, Liu Z, Zeng Z (2015) Are the standard parameters of cervical spine alignment and range of motion related to age, sex, and cervical disc degeneration? J Neurosurg Spine 23(3):274–279. https://doi.org/10.3171/2015.1.Spine14489

    Article  PubMed  Google Scholar 

  14. Wattananon P, Intawachirarat N, Cannella M, Sung W, Silfies SP (2018) Reduced instantaneous center of rotation movement in patients with low back pain. Eur Spine J 27(1):154–162. https://doi.org/10.1007/s00586-017-5054-2

    Article  PubMed  Google Scholar 

  15. Liu B, Liu Z, VanHoof T, Kalala J, Zeng Z, Lin X (2014) Kinematic study of the relation between the instantaneous center of rotation and degenerative changes in the cervical intervertebral disc. Eur Spine J 23(11):2307–2313. https://doi.org/10.1007/s00586-014-3431-7

    Article  PubMed  Google Scholar 

  16. Amevo B, Worth D, Bogduk N (1991) Instantaneous axes of rotation of the typical cervical motion segments: a study in normal volunteers. Clin Biomech (Bristol, Avon) 6(2):111–117. https://doi.org/10.1016/0268-0033(91)90008-e

    Article  CAS  Google Scholar 

  17. Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J (2013) Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion–extension: implications for artificial disc design and evaluation of motion quality after arthrodesis. Spine 38(10):E594–E601. https://doi.org/10.1097/BRS.0b013e31828ca5c7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Noh SH, Zhang HY (2018) Comparison among perfect-C(R), zero-P(R), and plates with a cage in single-level cervical degenerative disc disease. BMC Musculoskelet Disord 19(1):33. https://doi.org/10.1186/s12891-018-1950-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Finn MA, Brodke DS, Daubs M, Patel A, Bachus KN (2009) Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty. Eur Spine J 18(10):1520–1527. https://doi.org/10.1007/s00586-009-1085-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Jt Surg Am 81(4):519–528

    Article  CAS  Google Scholar 

  21. Boonstra AM, Schiphorst Preuper HR, Balk GA, Stewart RE (2014) Cut-off points for mild, moderate, and severe pain on the visual analogue scale for pain in patients with chronic musculoskeletal pain. Pain 155(12):2545–2550. https://doi.org/10.1016/j.pain.2014.09.014

    Article  PubMed  Google Scholar 

  22. Bogduk N, Mercer S (2000) Biomechanics of the cervical spine I: normal kinematics. Clin Biomech (Bristol, Avon) 15(9):633–648

    Article  CAS  Google Scholar 

  23. Amevo B, Aprill C, Bogduk N (1992) Abnormal instantaneous axes of rotation in patients with neck pain. Spine 17(7):748–75624

    Article  CAS  Google Scholar 

  24. Chien A, Lai DM, Wang SF, Hsu WL, Cheng CH, Wang JL (2016) Comparison of cervical kinematics, pain, and functional disability between single- and two-level anterior cervical discectomy and fusion. Spine 41(15):E915–E922. https://doi.org/10.1097/brs.0000000000001502

    Article  PubMed  Google Scholar 

  25. Anderst WJ, Lee JY, Donaldson WF 3rd, Kang JD (2013) Six-degrees-of-freedom cervical spine range of motion during dynamic flexion–extension after single-level anterior arthrodesis: comparison with asymptomatic control subjects. J Bone Jt Surg Am 95(6):497–506. https://doi.org/10.2106/jbjs.K.01733

    Article  Google Scholar 

  26. Li Z, Wu H, Chu J, Liu M, Hou S, Yu S, Hou T (2018) Motion analysis of dynamic cervical implant stabilization versus anterior discectomy and fusion: a retrospective analysis of 70 cases. Eur Spine J 27(11):2772–2780. https://doi.org/10.1007/s00586-018-5755-1

    Article  PubMed  Google Scholar 

  27. Bogduk N, Amevo B, Pearcy M (1995) A biological basis for instantaneous centres of rotation of the vertebral column. Proc Inst Mech Eng H J Eng Med 209(3):177–183. https://doi.org/10.1243/pime_proc_1995_209_341_0228

    Article  CAS  Google Scholar 

  28. Baillargeon E, Anderst WJ (2013) Sensitivity, reliability and accuracy of the instant center of rotation calculation in the cervical spine during in vivo dynamic flexion–extension. J Biomech 46(4):670–676. https://doi.org/10.1016/j.jbiomech.2012.11.055

    Article  PubMed  PubMed Central  Google Scholar 

  29. Park DK, Lin EL, Phillips FM (2011) Index and adjacent level kinematics after cervical disc replacement and anterior fusion: in vivo quantitative radiographic analysis. Spine 36(9):721–730. https://doi.org/10.1097/BRS.0b013e3181df10fc

    Article  PubMed  Google Scholar 

  30. Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, Chen D (2013) Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J 22(7):1539–1546. https://doi.org/10.1007/s00586-013-2772-y

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu B, Zeng Z, Hoof TV, Kalala JP, Liu Z, Wu B (2015) Comparison of hybrid constructs with 2-level artificial disc replacement and 2-level anterior cervical discectomy and fusion for surgical reconstruction of the cervical spine: a kinematic study in whole cadavers. Med Sci Monitor 21:1031–1037. https://doi.org/10.12659/MSM.892712

    Article  Google Scholar 

  32. Peterson Joshua M, Carolyn Chlebek, Clough Ashley M, Wells Alexandra K, Ledet Eric H (2018) Stiffness matters: part I—the effects of plate stiffness on the biomechanics of ACDF in vitro. Spine (Phila Pa 1976) 43(18):E1061–E1068

    CAS  Google Scholar 

  33. Kolstad F, Nygaard OP, Leivseth G (2007) Segmental motion adjacent to anterior cervical arthrodesis: a prospective study. Spine 32(5):512–517. https://doi.org/10.1097/01.brs.0000256448.04035.bb

    Article  PubMed  Google Scholar 

  34. Reitman CA, Hipp JA, Nguyen L, Esses SI (2004) Changes in segmental intervertebral motion adjacent to cervical arthrodesis: a prospective study. Spine 29(11):E221–226

    Article  Google Scholar 

  35. Shi S, Zheng S, Li XF, Yang LL, Liu ZD, Yuan W (2016) Comparison of 2 zero-profile implants in the treatment of single-level cervical spondylotic myelopathy: a preliminary clinical study of cervical disc arthroplasty versus fusion. PLoS ONE 11(7):e0159761. https://doi.org/10.1371/journal.pone.0159761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 81772370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoge Liu.

Ethics declarations

Conflict of interest

No conflict of interest for all authors regarding this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Wu, B., Liu, B. et al. Adjacent segment motion following multi-level ACDF: a kinematic and clinical study in patients with zero-profile anchored spacer or plate. Eur Spine J 28, 2408–2416 (2019). https://doi.org/10.1007/s00586-019-06109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-06109-8

Keywords

Navigation