Skip to main content

Advertisement

Log in

Does image guidance decrease pedicle screw-related complications in surgical treatment of adolescent idiopathic scoliosis: a systematic review update and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Surgical treatment of severe adolescent idiopathic scoliosis (AIS) with posterior spinal instrumentation and fusion with pedicle screws is common, requiring careful screw insertion to prevent pedicle breaches and neurologic complications. Image guidance has been suggested to improve breach rates, though the radiation risk for AIS precludes its common usage. The purpose of this systematic review and meta-analysis was to compare the breach rates and screw-related complications for AIS patients undergoing spine surgery with pedicle screws between freehand screw insertion and image guidance methods.

Methods

A comprehensive search of MEDLINE, EMBASE, CINAHL, CENTRAL and Web of Science databases was conducted. Two reviewers independently screened abstracts, full-texts, extracted data and performed risk of bias assessment using the QUIPS quality appraisal tool. Level of evidence summary statements were formulated based on consistency and quality of reporting.

Results

Ninety-four studies were found, with 18 studies of moderate risk of bias or better. Moderate evidence from two head-to-head studies shows CT guidance has lower breach rates than freehand methods (OR 0.28 [0.20–0.40, I2 = 1%]), with no complications in either study. From individual studies, moderate evidence showed lower breach rates for image guidance versus freehand methods (13%, I2 = 98% vs. 20%, I2 = 95%). Complication rates were conflicting (0–1.6% for image guidance, 0–1.7% for freehand). Moderate evidence showed increased surgical time for image guidance versus freehand (257.7 min vs. 226.8 min).

Conclusions

Meta-analyzed breach rates show moderate evidence of decreased breaches with CT navigation compared with freehand methods. Complication rates remain unknown due to the low complication rates from small sample sizes.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA (2008) Adolescent idiopathic scoliosis. Lancet (Lond Engl) 371:1527–1537

    Article  Google Scholar 

  2. Bridwell KH (1999) Surgical treatment of idiopathic adolescent scoliosis. Spine 24:2607–2616

    Article  CAS  Google Scholar 

  3. Basques BA, Lukasiewicz AM, Samuel AM, Webb ML, Bohl DD, Smith BG et al (2017) Which pediatric orthopaedic procedures have the greatest risk of adverse outcomes? J Pediatr Orthop 37:429–434. https://doi.org/10.1097/BPO.0000000000000683

    Article  PubMed  Google Scholar 

  4. Cuartas E, Rasouli A, O’Brien M, Shufflebarger HL (2009) Use of all-pedicle-screw constructs in the treatment of adolescent idiopathic scoliosis. J Am Acad Orthop Surg 17:550–561

    Article  Google Scholar 

  5. Hicks J, Singla A, Shen F, Arlet V (2010) Complications of pedicle screw fixation in scoliosis surgery. Spine 35:E465–E470

    Article  Google Scholar 

  6. Reames D, Smith J, Fu K-M (2011) Complications in the surgical treatment of 19,360 cases of pediatric scoliosis. Spine 36:1484–1491

    Article  Google Scholar 

  7. Coe JD, Arlet V, Donaldson W, Berven S, Hanson DS, Mudiyam R et al (2006) Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976) 31:345–349. https://doi.org/10.1097/01.brs.0000197188.76369.13

    Article  Google Scholar 

  8. Helm PA, Teichman R, Hartmann SL, Simon D (2015) Spinal navigation and imaging: history, trends, and future. IEEE Trans Med Imaging 34:1738–1746. https://doi.org/10.1109/TMI.2015.2391200

    Article  PubMed  Google Scholar 

  9. Chan A, Parent E, Narvacan K, San C, Lou E (2017) Intraoperative image guidance compared with free-hand methods in adolescent idiopathic scoliosis posterior spinal surgery: a systematic review on screw-related complications and breach rates. Spine J 17:1215–1229. https://doi.org/10.1016/j.spinee.2017.04.001

    Article  PubMed  Google Scholar 

  10. Gao B, Gao W, Chen C, Wang Q, Lin S, Xu C et al (2017) What is the difference in morphologic features of the thoracic pedicle between patients with adolescent idiopathic scoliosis and healthy subjects? A CT-based case-control study. Clin Orthop. https://doi.org/10.1007/s11999-017-5448-9

    Article  PubMed  Google Scholar 

  11. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26:352–359. https://doi.org/10.1097/00007632-200102150-0001

    Article  CAS  PubMed  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  13. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22:276–282

    Article  Google Scholar 

  14. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C (2013) Assessing bias in studies of prognostic factors. Ann Intern Med 158:280–286. https://doi.org/10.7326/0003-4819-158-4-201302190-00009

    Article  Google Scholar 

  15. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  Google Scholar 

  16. Schellingerhout JM, Verhagen AP, Heymans MW, Koes BW, de Vet HC, Terwee CB (2012) Measurement properties of disease-specific questionnaires in patients with neck pain: a systematic review. Qual Life Res 21:659–670. https://doi.org/10.1007/s11136-011-9965-9

    Article  PubMed  Google Scholar 

  17. Su AW, McIntosh AL, Schueler BA, Milbrandt TA, Winkler JA, Stans AA et al (2017) How does patient radiation exposure compare with low-dose o-arm versus fluoroscopy for pedicle screw placement in idiopathic scoliosis? J Pediatr Orthop 37:171–177. https://doi.org/10.1097/BPO.0000000000000608

    Article  PubMed  Google Scholar 

  18. Ughwanogho E, Patel NM, Baldwin KD, Sampson NR, Flynn JM (2012) Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine 37:E473–E478. https://doi.org/10.1097/BRS.0b013e318238bbd9

    Article  PubMed  Google Scholar 

  19. Sakai Y, Matsuyama Y, Nakamura H, Katayama Y, Imagama S, Ito Z et al (2008) Segmental pedicle screwing for idiopathic scoliosis using computer-assisted surgery. J Spinal Disord Tech 21:181–186. https://doi.org/10.1097/BSD.0b013e318074d388

    Article  PubMed  Google Scholar 

  20. Vissarionov S, Schroeder JE, Novikov SN, Kokyshin D, Belanchikov S, Kaplan L (2014) The utility of 3-dimensional-navigation in the surgical treatment of children with idiopathic scoliosis. Spine Deform 2:270–275. https://doi.org/10.1016/j.jspd.2014.03.004

    Article  PubMed  Google Scholar 

  21. Zhu W, Sun W, Xu L, Sun X, Liu Z, Qiu Y et al (2017) Minimally invasive scoliosis surgery assisted by O-arm navigation for Lenke Type 5C adolescent idiopathic scoliosis: a comparison with standard open approach spinal instrumentation. J Neurosurg Pediatr 19:472–478. https://doi.org/10.3171/2016.11.PEDS16412

    Article  Google Scholar 

  22. Liu Z, Jin M, Qiu Y, Yan H, Han X, Zhu Z (2016) The superiority of intraoperative o-arm navigation-assisted surgery in instrumenting extremely small thoracic pedicles of adolescent idiopathic scoliosis: a case-control study. Medicine (Baltimore) 95:e3581. https://doi.org/10.1097/MD.0000000000003581

    Article  CAS  Google Scholar 

  23. Su P, Zhang W, Peng Y, Liang A, Du K, Huang D (2012) Use of computed tomographic reconstruction to establish the ideal entry point for pedicle screws in idiopathic scoliosis. Eur Spine J 21:23–30. https://doi.org/10.1007/s00586-011-1962-8

    Article  PubMed  Google Scholar 

  24. Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Kato H (2010) Accuracy of multilevel registration in image-guided pedicle screw insertion for adolescent idiopathic scoliosis. Spine 35:347–352. https://doi.org/10.1097/BRS.0b013e3181b77f0a

    Article  PubMed  Google Scholar 

  25. Akazawa T, Kotani T, Sakuma T, Minami S, Tsukamoto S, Ishige M (2015) Evaluation of pedicle screw placement by pedicle channel grade in adolescent idiopathic scoliosis: should we challenge narrow pedicles? J Orthop Sci 20:818–822. https://doi.org/10.1007/s00776-015-0746-0

    Article  PubMed  Google Scholar 

  26. Zhang W, Takigawa T, Wu Y, Sugimoto Y, Tanaka M, Ozaki T (2017) Accuracy of pedicle screw insertion in posterior scoliosis surgery: a comparison between intraoperative navigation and preoperative navigation techniques. Eur Spine J 26:1756–1764. https://doi.org/10.1007/s00586-016-4930-5

    Article  PubMed  Google Scholar 

  27. Uehara M, Takahashi J, Kuraishi S, Shimizu M, Ikegami S, Futatsugi T et al (2017) Computer-assisted skip pedicle screw fixation for adolescent idiopathic scoliosis. J Orthop Sci 22:218–223. https://doi.org/10.1016/j.jos.2016.11.012

    Article  PubMed  Google Scholar 

  28. Shufflebarger HL, Geck MJ, Clark CE (2004) The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis: posterior shortening and pedicle screws. Spine 29:269–276 (discussion 276)

    Article  Google Scholar 

  29. Chen J, Yang C, Ran B, Wang Y, Wang C, Zhu X et al (2013) Correction of Lenke 5 adolescent idiopathic scoliosis using pedicle screw instrumentation: does implant density influence the correction? Spine 38:E946–E951. https://doi.org/10.1097/BRS.0b013e318297bfd4

    Article  PubMed  Google Scholar 

  30. Sudo H, Ito M, Abe Y, Abumi K, Takahata M, Nagahama K et al (2014) Surgical treatment of Lenke 1 thoracic adolescent idiopathic scoliosis with maintenance of kyphosis using the simultaneous double-rod rotation technique. Spine 39:1163–1169. https://doi.org/10.1097/BRS.0000000000000364

    Article  PubMed  Google Scholar 

  31. Upendra BN, Meena D, Chowdhury B, Ahmad A, Jayaswal A (2008) Outcome-based classification for assessment of thoracic pedicular screw placement. Spine 33:384–390. https://doi.org/10.1097/BRS.0b013e3181646ba1

    Article  PubMed  Google Scholar 

  32. Kwan MK, Chiu CK, Gani SMA, Chan CYW (2016) Accuracy and safety of pedicle screw placement in adolescent idiopathic scoliosis (AIS) patients: a review of 2020 screws using computed tomography assessment. Spine. https://doi.org/10.1097/BRS.0000000000001738

    Article  PubMed  Google Scholar 

  33. Sudo H, Abe Y, Abumi K, Iwasaki N, Ito M (2016) Surgical treatment of double thoracic adolescent idiopathic scoliosis with a rigid proximal thoracic curve. Eur Spine J 25:569–577. https://doi.org/10.1007/s00586-015-4139-z

    Article  PubMed  Google Scholar 

  34. Macke JJ, Woo R, Varich L (2016) Accuracy of robot-assisted pedicle screw placement for adolescent idiopathic scoliosis in the pediatric population. J Robot Surg 10:145–150. https://doi.org/10.1007/s11701-016-0587-7

    Article  PubMed  Google Scholar 

  35. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine 15:11–14

    Article  CAS  Google Scholar 

  36. Abul-Kasim K, Ohlin A (2011) The rate of screw misplacement in segmental pedicle screw fixation in adolescent idiopathic scoliosis. Acta Orthop 82:50–55. https://doi.org/10.3109/17453674.2010.548032

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zheng X, Qian B-P, Liu Z, Sun X, Zhu Z-Z, Wang B et al (2017) Screw placement at the apex alters surgical outcomes of moderate Lenke 1 adolescent idiopathic scoliosis. Clin Spine Surg 30:E883–E891. https://doi.org/10.1097/BSD.0000000000000435

    Article  PubMed  Google Scholar 

  38. Etemadifar M, Jamalaldini M (2017) Evaluating accuracy of free-hand pedicle screw insertion in adolescent idiopathic scoliosis using postoperative multi-slice computed tomography scan. Adv Biomed Res 6:19. https://doi.org/10.4103/2277-9175.201331

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abul-Kasim K, Ohlin A, Strömbeck A, Maly P, Sundgren PC (2010) Radiological and clinical outcome of screw placement in adolescent idiopathic scoliosis: evaluation with low-dose computed tomography. Eur Spine J 19:96–104. https://doi.org/10.1007/s00586-009-1203-6

    Article  PubMed  Google Scholar 

  40. Wang W, Zhu Z, Zhu F, Wang B, Chu WCW, Cheng JCY et al (2008) The changes of relative position of the thoracic aorta after anterior or posterior instrumentation of type I Lenke curve in adolescent idiopathic thoracic scoliosis. Eur Spine J 17:1019–1026. https://doi.org/10.1007/s00586-008-0691-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wong CC, Ting F, Wong B, Lee PI (2005) Accuracy of the funnel technique of thoracic pedicle screws insertion in scoliosis surgery—an evaluation by CT-scans. Med J Malaysia 60(Suppl C):35–40

    PubMed  Google Scholar 

  42. Parker SL, McGirt MJ, Farber SH, Amin AG, Rick A-M, Suk I et al (2011) Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery 68:170–178. https://doi.org/10.1227/neu.0b013e3181fdfaf4(discussion 178)

    Article  PubMed  Google Scholar 

  43. Modi H, Suh SW, Song H-R, Yang J-H (2009) Accuracy of thoracic pedicle screw placement in scoliosis using the ideal pedicle entry point during the freehand technique. Int Orthop 33:469–475. https://doi.org/10.1007/s00264-008-0535-x

    Article  PubMed  Google Scholar 

  44. Burton DC, Carlson BB, Place HM, Fuller JE, Blanke K, Cho R et al (2016) Results of the scoliosis research society morbidity and mortality database 2009–2012: a report from the morbidity and mortality committee. Spine Deform 4:338–343. https://doi.org/10.1016/j.jspd.2016.05.003

    Article  PubMed  Google Scholar 

  45. Vasudeva V, Moses Z, Cole T, Gologorsky Y, Lu Y (2015) Chapter 14—image guidance for spine surgery. In: Golby AJ (ed) Image-guided neurosurgery. Academic Press, Boston, pp 325–364. https://doi.org/10.1016/b978-0-12-800870-6.00014-5

    Chapter  Google Scholar 

  46. Cheng H, Chen BP-H, Soleas IM, Ferko NC, Cameron CG, Hinoul P (2017) Prolonged operative duration increases risk of surgical site infections: a systematic review. Surg Infect 18:722–735. https://doi.org/10.1089/sur.2017.089

    Article  Google Scholar 

  47. Lee CK, Chan CYW, Gani SMA, Kwan MK (2017) Accuracy of cannulated pedicle screw versus conventional pedicle screw for extra-pedicular screw placement in dysplastic pedicles without cancellous channel in adolescent idiopathic scoliosis: a computerized tomography (CT) analysis. Eur Spine J. https://doi.org/10.1007/s00586-017-5266-5

    Article  PubMed  Google Scholar 

  48. Abul-Kasim K, Ohlin A (2014) Evaluation of implant loosening following segmental pedicle screw fixation in adolescent idiopathic scoliosis: a 2 year follow-up with low-dose CT. Scoliosis 9:13. https://doi.org/10.1186/1748-7161-9-13

    Article  PubMed  PubMed Central  Google Scholar 

  49. Aoude AA, Fortin M, Figueiredo R, Jarzem P, Ouellet J, Weber MH (2015) Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J 24:990–1004. https://doi.org/10.1007/s00586-015-3853-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Elizabeth Dennett from the University of Alberta provided guidance on search terms and search strategy. Dr. Marc Moreau and Sarah Southon from Alberta Health Services and the Edmonton Scoliosis Clinic provided search terms and guidance on objectives and key outcomes for this study. Undergraduate student Suzana Trac helped with study de-duplication and study design assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Parent.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, A., Parent, E., Wong, J. et al. Does image guidance decrease pedicle screw-related complications in surgical treatment of adolescent idiopathic scoliosis: a systematic review update and meta-analysis. Eur Spine J 29, 694–716 (2020). https://doi.org/10.1007/s00586-019-06219-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-06219-3

Keywords

Navigation