Skip to main content
Log in

Relationship between iliac screw loosening and proximal junctional kyphosis after long thoracolumbar instrumented fusion for adult spinal deformity

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Authors assumed that the stability of iliac screw (IS) fixation could affect the development of proximal junctional kyphosis (PJK). The purpose of this study was to analyze the relationship between IS loosening and PJK after long fusion surgery for adult spinal deformity (ASD).

Methods

Sixty-eight ASD patients (6 males, 62 females; mean age, 68.1 years) who underwent long fusion surgery with IS fixation were reviewed. The incidence and risk factors of IS loosening were investigated. The relationship between IS loosening and PJK was also analyzed.

Results

IS loosening and PJK appeared in 33 and 19 patients, respectively. The median time for IS loosening and PJK to develop was 6.0 months (range 1.3–59.2) and 9.1 months (range 1.3–73.2), respectively. PJK developed in patients without IS loosening more frequently than in patients with IS loosening. PJK did not develop in 28 patients who presented with IS loosening first. IS loosening developed 5 months postoperatively in those 28 patients, whereas IS loosening was present 11 months postoperatively in 4 patients who presented with PJK first. Preoperative PT (OR = 1.091) and IS loosening (OR = 0.343) were significantly related with the development of PJK. IS loosening was significantly associated with postoperative PI-LL > 10° (OR = 0.957), postoperative SVA (OR = 1.023), and postoperative PT (OR = 1.072).

Conclusion

Postoperative sagittal malalignment should be avoided to prevent IS loosening and PJK. IS loosening occurred earlier than PJK and seemed to affect the development of PJK. This relationship supports the hypothesis that distal stability of long constructs may increase proximal junctional stress.

Level of evidence

III.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kuhns CA, Bridwell KH, Lenke LG, Amor C, Lehman RA, Buchowski JM, Edwards C 2nd, Christine B (2007) Thoracolumbar deformity arthrodesis stopping at L5: fate of the L5–S1 disc, minimum 5-year follow-up. Spine (Phila Pa 1976) 32:2771–2776. https://doi.org/10.1097/brs.0b013e31815a7ece

    Article  Google Scholar 

  2. Ha KY, Kim SI, Kim YH, Park HY, Ahn JH (2018) Jack-knife posture after correction surgery for degenerative sagittal imbalance—does spinopelvic parameter always matter in preventing stooping posture? Spine Deform 6:771–780. https://doi.org/10.1016/j.jspd.2018.03.007

    Article  PubMed  Google Scholar 

  3. Cho KJ, Suk SI, Park SR, Kim JH, Kang SB, Kim HS, Oh SJ (2010) Risk factors of sagittal decompensation after long posterior instrumentation and fusion for degenerative lumbar scoliosis. Spine (Phila Pa 1976) 35:1595–1601. https://doi.org/10.1097/brs.0b013e3181bdad89

    Article  Google Scholar 

  4. Fleischer GD, Kim YJ, Ferrara LA, Freeman AL, Boachie-Adjei O (2012) Biomechanical analysis of sacral screw strain and range of motion in long posterior spinal fixation constructs: effects of lumbosacral fixation strategies in reducing sacral screw strains. Spine (Phila Pa 1976) 37:E163–E169. https://doi.org/10.1097/brs.0b013e31822ce9a7

    Article  Google Scholar 

  5. Finger T, Bayerl S, Onken J, Czabanka M, Woitzik J, Vajkoczy P (2014) Sacropelvic fixation versus fusion to the sacrum for spondylodesis in multilevel degenerative spine disease. Eur Spine J 23:1013–1020. https://doi.org/10.1007/s00586-014-3165-6

    Article  CAS  PubMed  Google Scholar 

  6. Smith JS, Klineberg E, Lafage V, Shaffrey CI, Schwab F, Lafage R, Hostin R, Mundis GM Jr, Errico TJ, Kim HJ, Protopsaltis TS, Hamilton DK, Scheer JK, Soroceanu A, Kelly MP, Line B, Gupta M, Deviren V, Hart R, Burton DC, Bess S, Ames CP (2016) Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine 25:1–14. https://doi.org/10.3171/2015.11.Spine151036

    Article  PubMed  Google Scholar 

  7. Glattes RC, Bridwell KH, Lenke LG, Kim YJ, Rinella A, Edwards C 2nd (2005) Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis. Spine (Phila Pa 1976) 30:1643–1649

    Article  Google Scholar 

  8. Ha Y, Maruo K, Racine L, Schairer WW, Hu SS, Deviren V, Burch S, Tay B, Chou D, Mummaneni PV, Ames CP, Berven SH (2013) Proximal junctional kyphosis and clinical outcomes in adult spinal deformity surgery with fusion from the thoracic spine to the sacrum: a comparison of proximal and distal upper instrumented vertebrae. J Neurosurg Spine 19:360–369. https://doi.org/10.3171/2013.5.Spine12737

    Article  PubMed  Google Scholar 

  9. Sebaaly A, Sylvestre C, El Quehtani Y, Riouallon G, Larrieu D, Boissiere L, Steib JP, Roussouly P, Wolff S, Obeid I (2018) Incidence and risk factors for proximal junctional kyphosis: results of a multicentric study of adult scoliosis. Clin Spine Surg 31:E178–e183. https://doi.org/10.1097/bsd.0000000000000630

    Article  PubMed  Google Scholar 

  10. Liu FY, Wang T, Yang SD, Wang H, Yang DL, Ding WY (2016) Incidence and risk factors for proximal junctional kyphosis: a meta-analysis. Eur Spine J 25:2376–2383. https://doi.org/10.1007/s00586-016-4534-0

    Article  PubMed  Google Scholar 

  11. Kim JS, Phan K, Cheung ZB, Lee N, Vargas L, Arvind V, Merrill RK, Gidumal S, Di Capua J, Overley S, Dowdell J, Cho SK (2019) Surgical, radiographic, and patient-related risk factors for proximal junctional kyphosis: a meta-analysis. Global Spine J 9:32–40. https://doi.org/10.1177/2192568218761362

    Article  CAS  PubMed  Google Scholar 

  12. Zou L, Liu J, Lu H (2018) Characteristics and risk factors for proximal junctional kyphosis in adult spinal deformity after correction surgery: a systematic review and meta-analysis. Neurosurg Rev. https://doi.org/10.1007/s10143-018-1004-7

    Article  PubMed  Google Scholar 

  13. Yagi M, King AB, Boachie-Adjei O (2012) Incidence, risk factors, and natural course of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Minimum 5 years of follow-up. Spine (Phila Pa 1976) 37:1479–1489. https://doi.org/10.1097/brs.0b013e31824e4888

    Article  Google Scholar 

  14. Kim HJ, Iyer S (2016) Proximal junctional kyphosis. J Am Acad Orthop Surg 24:318–326. https://doi.org/10.5435/jaaos-d-14-00393

    Article  PubMed  Google Scholar 

  15. Kuklo TR, Bridwell KH, Lewis SJ, Baldus C, Blanke K, Iffrig TM, Lenke LG (2001) Minimum 2-year analysis of sacropelvic fixation and L5–S1 fusion using S1 and iliac screws. Spine (Phila Pa 1976) 26:1976–1983

    Article  CAS  Google Scholar 

  16. Tsuchiya K, Bridwell KH, Kuklo TR, Lenke LG, Baldus C (2006) Minimum 5-year analysis of L5–S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine (Phila Pa 1976) 31:303–308. https://doi.org/10.1097/01.brs.0000197193.81296.f1

    Article  Google Scholar 

  17. Cho W, Mason JR, Smith JS, Shimer AL, Wilson AS, Shaffrey CI, Shen FH, Novicoff WM, Fu KM, Heller JE, Arlet V (2013) Failure of lumbopelvic fixation after long construct fusions in patients with adult spinal deformity: clinical and radiographic risk factors: clinical article. J Neurosurg Spine 19:445–453. https://doi.org/10.3171/2013.6.Spine121129

    Article  PubMed  Google Scholar 

  18. Banno T, Hasegawa T, Yamato Y, Kobayashi S, Togawa D, Oe S, Mihara Y, Matsuyama Y (2017) Prevalence and risk factors of iliac screw loosening after adult spinal deformity surgery. Spine (Phila Pa 1976) 42:E1024–e1030. https://doi.org/10.1097/brs.0000000000002047

    Article  Google Scholar 

  19. Wu X, Shi J, Wu J, Cheng Y, Peng K, Chen J, Jiang H (2019) Pedicle screw loosening: the value of radiological imagings and the identification of risk factors assessed by extraction torque during screw removal surgery. J Orthop Surg Res 14:6. https://doi.org/10.1186/s13018-018-1046-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sanden B, Olerud C, Petren-Mallmin M, Johansson C, Larsson S (2004) The significance of radiolucent zones surrounding pedicle screws. Definition of screw loosening in spinal instrumentation. J Bone Joint Surg Br 86:457–461

    Article  CAS  Google Scholar 

  21. Chang DG, Ha KY, Kim YH, Lee EW (2017) Spinopelvic alignment by different surgical methods in the treatment of degenerative sagittal imbalance of the lumbar spine. Clin Spine Surg 30:E390–e397. https://doi.org/10.1097/bsd.0000000000000239

    Article  PubMed  Google Scholar 

  22. O’Shaughnessy BA, Lenke LG, Bridwell KH, Cho W, Zebala LP, Chang MS, Auerbach JD, Crawford CH, Koester LA (2012) Should symptomatic iliac screws be electively removed in adult spinal deformity patients fused to the sacrum? Spine (Phila Pa 1976) 37:1175–1181. https://doi.org/10.1097/brs.0b013e3182426970

    Article  Google Scholar 

  23. Guler UO, Cetin E, Yaman O, Pellise F, Casademut AV, Sabat MD, Alanay A, Grueso FS, Acaroglu E (2015) Sacropelvic fixation in adult spinal deformity (ASD); a very high rate of mechanical failure. Eur Spine J 24:1085–1091. https://doi.org/10.1007/s00586-014-3615-1

    Article  PubMed  Google Scholar 

  24. Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ (2015) Pedicle screw loosening: a clinically relevant complication? Eur Spine J 24:1005–1016. https://doi.org/10.1007/s00586-015-3768-6

    Article  PubMed  Google Scholar 

  25. Ko CC, Tsai HW, Huang WC, Wu JC, Chen YC, Shih YH, Chen HC, Wu CL, Cheng H (2010) Screw loosening in the Dynesys stabilization system: radiographic evidence and effect on outcomes. Neurosurg Focus 28:E10. https://doi.org/10.3171/2010.3.Focus1052

    Article  PubMed  Google Scholar 

  26. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K (2000) Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine (Phila Pa 1976) 25:858–864

    Article  CAS  Google Scholar 

  27. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K (2001) Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J 1:402–407

    Article  CAS  Google Scholar 

  28. Ozawa T, Takahashi K, Yamagata M, Ohtori S, Aoki Y, Saito T, Inoue G, Ito T, Moriya H (2005) Insertional torque of the lumbar pedicle screw during surgery. J Orthop Sci 10:133–136. https://doi.org/10.1007/s00776-004-0883-3

    Article  PubMed  Google Scholar 

  29. Wu JC, Huang WC, Tsai HW, Ko CC, Wu CL, Tu TH, Cheng H (2011) Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurg Focus 31:E9. https://doi.org/10.3171/2011.7.Focus11125

    Article  PubMed  Google Scholar 

  30. Dakhil-Jerew F, Jadeja H, Cohen A, Shepperd JA (2009) Inter-observer reliability of detecting Dynesys pedicle screw using plain X-rays: a study on 50 post-operative patients. Eur Spine J 18:1486–1493. https://doi.org/10.1007/s00586-009-1071-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim JW, Park SW, Kim YB, Ko MJ (2018) The effect of postoperative use of teriparatide reducing screw loosening in osteoporotic patients. J Korean Neurosurg Soc 61:494–502. https://doi.org/10.3340/jkns.2017.0216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Takaso M, Toyone T, Takahashi K (2013) Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976) 38:E487–E492. https://doi.org/10.1097/brs.0b013e31828826dd

    Article  Google Scholar 

  33. Oba H, Ebata S, Takahashi J, Ikegami S, Koyama K, Haro H, Kato H, Ohba T (2019) Loss of pelvic incidence correction after long fusion using iliac screws for adult spinal deformity: cause and effect on clinical outcome. Spine (Phila Pa 1976) 44:195–202. https://doi.org/10.1097/brs.0000000000002775

    Article  Google Scholar 

  34. Le Huec JC, Richards J, Tsoupras A, Price R, Leglise A, Faundez AA (2018) The mechanism in junctional failure of thoraco-lumbar fusions. Part I: biomechanical analysis of mechanisms responsible of vertebral overstress and description of the cervical inclination angle (CIA). Eur Spine J 27:129–138. https://doi.org/10.1007/s00586-017-5425-8

    Article  PubMed  Google Scholar 

  35. Polly DW Jr (2017) The sacroiliac joint. Neurosurg Clin N Am 28:301–312. https://doi.org/10.1016/j.nec.2017.03.003

    Article  PubMed  Google Scholar 

  36. Sturesson B, Uden A, Vleeming A (2000) A radiostereometric analysis of the movements of the sacroiliac joints in the reciprocal straddle position. Spine (Phila Pa 1976) 25:214–217

    Article  CAS  Google Scholar 

  37. Sturesson B, Uden A, Vleeming A (2000) A radiostereometric analysis of movements of the sacroiliac joints during the standing hip flexion test. Spine (Phila Pa 1976) 25:364–368

    Article  CAS  Google Scholar 

  38. Vleeming A, Schuenke MD, Masi AT, Carreiro JE, Danneels L, Willard FH (2012) The sacroiliac joint: an overview of its anatomy, function and potential clinical implications. J Anat 221:537–567. https://doi.org/10.1111/j.1469-7580.2012.01564.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bridwell KH, Lenke LG, Cho SK, Pahys JM, Zebala LP, Dorward IG, Cho W, Baldus C, Hill BW, Kang MM (2013) Proximal junctional kyphosis in primary adult deformity surgery: evaluation of 20 degrees as a critical angle. Neurosurgery 72:899–906. https://doi.org/10.1227/NEU.0b013e31828bacd8

    Article  PubMed  Google Scholar 

  40. Kim YJ, Bridwell KH, Lenke LG, Glattes CR, Rhim S, Cheh G (2008) Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: minimum five-year follow-up. Spine (Phila Pa 1976) 33:2179–2184. https://doi.org/10.1097/brs.0b013e31817c0428

    Article  Google Scholar 

  41. Park SJ, Lee CS, Chung SS, Lee JY, Kang SS, Park SH (2017) Different risk factors of proximal junctional kyphosis and proximal junctional failure following long instrumented fusion to the sacrum for adult spinal deformity: survivorship analysis of 160 patients. Neurosurgery 80:279–286. https://doi.org/10.1227/neu.0000000000001240

    Article  PubMed  Google Scholar 

  42. Hyun SJ, Kim YJ, Rhim SC (2016) Patients with proximal junctional kyphosis after stopping at thoracolumbar junction have lower muscularity, fatty degeneration at the thoracolumbar area. Spine J 16:1095–1101. https://doi.org/10.1016/j.spinee.2016.05.008

    Article  PubMed  Google Scholar 

  43. Raman T, Miller E, Martin CT, Kebaish KM (2017) The effect of prophylactic vertebroplasty on the incidence of proximal junctional kyphosis and proximal junctional failure following posterior spinal fusion in adult spinal deformity: a 5-year follow-up study. Spine J 17:1489–1498. https://doi.org/10.1016/j.spinee.2017.05.017

    Article  PubMed  Google Scholar 

  44. Chen S, Luo M, Wang Y, Liu H (2018) Stopping at sacrum versus nonsacral vertebra in long fusion surgery for adult spinal deformity: meta-analysis of revision with minimum 2-year follow-up. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.12.102

    Article  PubMed  PubMed Central  Google Scholar 

  45. Park WM, Choi DK, Kim K, Kim YJ, Kim YH (2015) Biomechanical effects of fusion levels on the risk of proximal junctional failure and kyphosis in lumbar spinal fusion surgery. Clin Biomech (Bristol, Avon) 30:1162–1169. https://doi.org/10.1016/j.clinbiomech.2015.08.009

    Article  Google Scholar 

  46. Lange T, Schmoelz W, Gosheger G, Eichinger M, Heinrichs CH, Boevingloh AS, Schulte TL (2017) Is a gradual reduction of stiffness on top of posterior instrumentation possible with a suitable proximal implant? A biomechanical study. Spine J 17:1148–1155. https://doi.org/10.1016/j.spinee.2017.03.021

    Article  PubMed  Google Scholar 

  47. Han S, Hyun SJ, Kim KJ, Jahng TA, Lee S, Rhim SC (2017) Rod stiffness as a risk factor of proximal junctional kyphosis after adult spinal deformity surgery: comparative study between cobalt chrome multiple-rod constructs and titanium alloy two-rod constructs. Spine J 17:962–968. https://doi.org/10.1016/j.spinee.2017.02.005

    Article  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Il Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YH., Ha, KY., Chang, DG. et al. Relationship between iliac screw loosening and proximal junctional kyphosis after long thoracolumbar instrumented fusion for adult spinal deformity. Eur Spine J 29, 1371–1378 (2020). https://doi.org/10.1007/s00586-020-06366-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06366-y

Keywords

Navigation