Skip to main content

Advertisement

Log in

Simultaneous single-position lateral interbody fusion and percutaneous pedicle screw fixation using O-arm-based navigation reduces the occupancy time of the operating room

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Lateral interbody fusion and posterior percutaneous pedicle screw (LIF-PPS) fixation has been performed in two-stage positioning. The aim of this study was to investigate the surgical outcomes of simultaneous single-position LIF-PPS fixation using O-arm-based navigation.

Methods

Overall, 102 consecutive subjects underwent indirect decompression surgery for spondylolisthesis with LIF-PPS fixation. Fifty-one subjects underwent surgery with repositioning, and 51 in the right lateral decubitus position. We compared these two groups in terms of the surgery time, occupancy time in the operating room, intraoperative blood loss, Japanese Orthopaedic Association (JOA) score, local lordosis acquisition in postoperative radiographs, and accuracy of screw insertion using postoperative CT scans.

Results

In the single-position group, surgery time, occupancy time of the operating room, and estimated blood loss were 93.3 ± 19.3 min (vs. the repositioning group: 121.0 ± 37.1 min; p <  0.001), 176.3 ± 36.4 min (vs. 272.4 ± 42.7 min; p < 0.001), and 93.4 ± 78.8 ml (vs. 40.9 ± 28.7 ml; p < 0.001), respectively. The JOA scores (pre-/postoperative) were 15.1 ± 3.0/24.4 ± 2.8 (p < 0.001) for the single-position group and 15.1 ± 4.0/24.8 ± 3.0 (p < 0.001) for the repositioning group. The rate of misplacement was 1.8% versus 4.0%, respectively (p = 0.267), and the lordosis acquisition was 4.2° ± 4.1° versus 4.4° ± 3.2°, respectively (p = 0.516).

Conclusions

Single-position surgery exhibited comparable clinical outcomes and local lordosis acquisition with conventional repositioning LIF-PPS fixation. This single-position minimally invasive technique reduces the occupancy time of the operating room and workforce requirements.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berjano P, Balsano M, Buric J, Petruzzi M, Lamartina C (2012) Direct lateral access lumbar and thoracolumbar fusion: preliminary results. Eur Spine J 21(Suppl 1):S37–S42. https://doi.org/10.1007/s00586-012-2217-z

    Article  PubMed  Google Scholar 

  2. Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J Off J N Am Spine Soc 6:435–443. https://doi.org/10.1016/j.spinee.2005.08.012

    Article  Google Scholar 

  3. Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine 36:26–32

    Article  Google Scholar 

  4. D’mitri AS, Briseño MR, Abrams J, Patel AA (2012) Complications of the lateral transpsoas approach for lumbar interbody arthrodesis: a case series and literature review. Clin Orthop Relat Res 470:1621–1632

    Article  Google Scholar 

  5. Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS (2010) Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 28:E7

    Article  Google Scholar 

  6. Uribe JS, Deukmedjian AR (2015) Visceral, vascular, and wound complications following over 13,000 lateral interbody fusions: a survey study and literature review. Eur Spine J 24:386–396

    Article  Google Scholar 

  7. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L (2010) Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976) 35:S302–S311. https://doi.org/10.1097/brs.0b013e3182023438

    Article  Google Scholar 

  8. Malham GM, Parker RM, Goss B, Blecher CM (2015) Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J 24(Suppl 3):339–345. https://doi.org/10.1007/s00586-015-3807-3

    Article  PubMed  Google Scholar 

  9. Elowitz EH, Yanni DS, Chwajol M, Starke RM, Perin NI (2011) Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg 54:201–206. https://doi.org/10.1055/s-0031-1286334

    Article  CAS  PubMed  Google Scholar 

  10. Oliveira L, Marchi L, Coutinho E, Pimenta L (2010) A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976) 35:S331–S337. https://doi.org/10.1097/brs.0b013e3182022db0

    Article  Google Scholar 

  11. Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG (2014) Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res 472:1784–1791. https://doi.org/10.1007/s11999-014-3464-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pavlov PW, Meijers H, van Limbeek J, Jacobs WC, Lemmens JA, Obradov-Rajic M, de Kleuver M (2004) Good outcome and restoration of lordosis after anterior lumbar interbody fusion with additional posterior fixation. Spine (Phila Pa 1976) 29:1893–1899 (discussion 1900)

    Article  Google Scholar 

  13. Yoshihara H (2017) Indirect decompression in spinal surgery. J Clin Neurosci Off J Neurosurg Soc Australas 44:63–68. https://doi.org/10.1016/j.jocn.2017.06.061

    Article  Google Scholar 

  14. Pereira EA, Farwana M, Lam KS (2017) Extreme lateral interbody fusion relieves symptoms of spinal stenosis and low-grade spondylolisthesis by indirect decompression in complex patients. J Clin Neurosci Off J Neurosurg Soc Australas 35:56–61. https://doi.org/10.1016/j.jocn.2016.09.010

    Article  Google Scholar 

  15. Januszewski J, Beckman JM, Bach K, Vivas AC, Uribe JS (2017) Indirect decompression and reduction of lumbar spondylolisthesis does not result in higher rates of immediate and long term complications. J Clin Neurosci Off J Neurosurg Soc Australas 45:218–222. https://doi.org/10.1016/j.jocn.2017.07.007

    Article  Google Scholar 

  16. Harimaya K, Lenke LG, Mishiro T, Bridwell KH, Koester LA, Sides BA (2009) Increasing lumbar lordosis of adult spinal deformity patients via intraoperative prone positioning. Spine (Phila Pa 1976) 34:2406–2412. https://doi.org/10.1097/brs.0b013e3181bab13b

    Article  Google Scholar 

  17. Blizzard D, Vovos T, Gallizzi M, Sheets C, Isaacs R, Reiser E, Brown C (2016) Interval effect of prone repositioning for posterior spinal instrumentation after lateral interbody fusion. J Spine Neurosurg 5:1–5

    Google Scholar 

  18. Yson SC, Sembrano JN, Santos ER, Luna JT, Polly DW Jr (2014) Does prone repositioning before posterior fixation produce greater lordosis in lateral lumbar interbody fusion (LLIF)? Clin Spine Surg 27:364–369

    Google Scholar 

  19. Drazin D, Kim TT, Johnson JP (2015) Simultaneous lateral interbody fusion and posterior percutaneous instrumentation: early experience and technical considerations. Biomed Res Int 2015:458284. https://doi.org/10.1155/2015/458284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blizzard DJ, Thomas JA (2018) MIS single-position lateral and oblique lateral lumbar interbody fusion and bilateral pedicle screw fixation: feasibility and perioperative results. Spine 43:440–446. https://doi.org/10.1097/brs.0000000000002330

    Article  PubMed  Google Scholar 

  21. Kwee MM, Ho YH, Rozen WM (2015) The prone position during surgery and its complications: a systematic review and evidence-based guidelines. Int Surg 100:292–303. https://doi.org/10.9738/intsurg-d-13-00256.1

    Article  PubMed  PubMed Central  Google Scholar 

  22. DePasse JM, Palumbo MA, Haque M, Eberson CP, Daniels AH (2015) Complications associated with prone positioning in elective spinal surgery. World J Orthoped 6:351–359. https://doi.org/10.5312/wjo.v6.i3.351

    Article  Google Scholar 

  23. Meyerding H (1932) Spondylolisthesis. Surg Gynecol Obstet 54:371–377

    Google Scholar 

  24. Fujiwara A, Kobayashi N, Saiki K, Kitagawa T, Tamai K, Saotome K (2003) Association of the Japanese orthopaedic association score with the Oswestry disability index, Roland–Morris disability questionnaire, and short-form 36. Spine 28:1601–1607. https://doi.org/10.1097/01.Brs.0000077510.95462.39

    Article  PubMed  Google Scholar 

  25. Azimi P, Mohammadi HR, Montazeri A (2012) An outcome measure of functionality and pain in patients with lumbar disc herniation: a validation study of the Japanese Orthopedic Association (JOA) score. J Orthop Sci Off J Jpn Orthop Assoc 17:341–345. https://doi.org/10.1007/s00776-012-0232-x

    Article  Google Scholar 

  26. Yamada T, Yoshii T, Yamamoto N, Hirai T, Inose H, Okawa A (2018) Surgical outcomes for lumbar spinal canal stenosis with coexisting cervical stenosis (tandem spinal stenosis): a retrospective analysis of 565 cases. J Orthop Surg Res 13:60. https://doi.org/10.1186/s13018-018-0765-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hirabayashi K, Miyakawa J, Satomi K, Maruyama T, Wakano K (1981) Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine (Phila Pa 1976) 6:354–364

    Article  CAS  Google Scholar 

  28. Aoude AA, Fortin M, Figueiredo R, Jarzem P, Ouellet J, Weber MH (2015) Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J 24:990–1004. https://doi.org/10.1007/s00586-015-3853-x

    Article  PubMed  Google Scholar 

  29. Whitecloud TS 3rd, Roesch WW, Ricciardi JE (2001) Transforaminal interbody fusion versus anterior-posterior interbody fusion of the lumbar spine: a financial analysis. J Spinal Disord 14:100–103

    Article  Google Scholar 

  30. Wu MH, Dubey NK, Li YY, Lee CY, Cheng CC, Shi CS, Huang TJ (2017) Comparison of minimally invasive spine surgery using intraoperative computed tomography integrated navigation, fluoroscopy, and conventional open surgery for lumbar spondylolisthesis: a prospective registry-based cohort study. Spine J Off J N Am Spine Soc 17:1082–1090. https://doi.org/10.1016/j.spinee.2017.04.002

    Article  Google Scholar 

  31. Nakahara M, Yasuhara T, Inoue T, Takahashi Y, Kumamoto S, Hijikata Y, Kusumegi A, Sakamoto Y, Ogawa K, Nishida K (2016) Accuracy of percutaneous pedicle screw insertion technique with conventional dual fluoroscopy units and a retrospective comparative study based on surgeon experience. Glob Spine J 6:322–328. https://doi.org/10.1055/s-0035-1563405

    Article  Google Scholar 

  32. Voyadzis J-M, Anaizi AN (2013) Minimally invasive lumbar transfacet screw fixation in the lateral decubitus position after extreme lateral interbody fusion: a technique and feasibility study. Clin Spine Surg 26:98–106. https://doi.org/10.1097/BSD.0b013e318241f6c3

    Article  Google Scholar 

  33. Ohba T, Ebata S, Fujita K, Sato H, Haro H (2016) Percutaneous pedicle screw placements: accuracy and rates of cranial facet joint violation using conventional fluoroscopy compared with intraoperative three-dimensional computed tomography computer navigation. Eur Spine J 25:1775–1780. https://doi.org/10.1007/s00586-016-4489-1

    Article  PubMed  Google Scholar 

  34. Van de Kelft E, Costa F, Van der Planken D, Schils F (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine 37:E1580–E1587

    Article  Google Scholar 

  35. Oertel MF, Hobart J, Stein M, Schreiber V, Scharbrodt W (2011) Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine 14:532–536. https://doi.org/10.3171/2010.10.Spine091032

    Article  PubMed  Google Scholar 

  36. Houten JK, Nasser R, Baxi N (2012) Clinical assessment of percutaneous lumbar pedicle screw placement using the O-arm multidimensional surgical imaging system. Neurosurgery 70:990–995. https://doi.org/10.1227/NEU.0b013e318237a829

    Article  PubMed  Google Scholar 

  37. Kanemura T, Satake K, Nakashima H, Segi N, Ouchida J, Yamaguchi H, Imagama S (2017) Understanding retroperitoneal anatomy for lateral approach spine surgery. Spine Surg Relat Res 1:107–120

    Article  Google Scholar 

  38. Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, Kotani T, Akazawa T, Morinaga T, Fujiyoshi T, Hasue F, Yamagata M, Hashimoto M, Yamauchi T, Eguchi Y, Suzuki M, Hanaoka E, Inage K, Sato J, Fujimoto K, Shiga Y, Kanamoto H, Yamauchi K, Nakamura J, Suzuki T, Hynes RA, Aoki Y, Takahashi K, Ohtori S (2017) Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine (Phila Pa 1976) 42:55–62. https://doi.org/10.1097/brs.0000000000001650

    Article  Google Scholar 

  39. Distefano VJ, Klein KS, Nixon JE, Andrews ET (1974) Intra-operative analysis of the effects of position and body habitus on surgery of the low back: a preliminary report. Clin Orthop Relat Res 99:51–56

    Article  Google Scholar 

  40. Schonauer C, Bocchetti A, Barbagallo G, Albanese V, Moraci A (2004) Positioning on surgical table. Eur Spine J 13(Suppl 1):S50–S55. https://doi.org/10.1007/s00586-004-0728-y

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nakashima H, Kanemura T, Satake K, Ishikawa Y, Ouchida J, Segi N, Yamaguchi H, Imagama S (2019) Comparative radiographic outcomes of lateral and posterior lumbar interbody fusion in the treatment of degenerative lumbar kyphosis. Asian Spine J. https://doi.org/10.31616/asj.2018.0204

    Article  PubMed  PubMed Central  Google Scholar 

  42. Malham GM, Ellis NJ, Parker RM, Blecher CM, White R, Goss B, Seex KA (2017) Maintenance of segmental lordosis and disk height in stand-alone and instrumented extreme lateral interbody fusion (XLIF). Clin Spine Surg 30:E90–E98. https://doi.org/10.1097/BSD.0b013e3182aa4c94

    Article  PubMed  Google Scholar 

  43. Peterson MD, Nelson LM, McManus AC, Jackson RP (1995) The effect of operative position on lumbar lordosis. A radiographic study of patients under anesthesia in the prone and 90–90 positions. Spine (Phila Pa 1976) 20:1419–1424

    Article  CAS  Google Scholar 

  44. Tribus CB, Belanger TA, Zdeblick TA (1999) The effect of operative position and short-segment fusion on maintenance of sagittal alignment of the lumbar spine. Spine (Phila Pa 1976) 24:58–61

    Article  CAS  Google Scholar 

  45. Fei H, Li WS, Sun ZR, Jiang S, Chen ZQ (2017) Effect of patient position on the lordosis and scoliosis of patients with degenerative lumbar scoliosis. Medicine (Baltimore) 96:e7648. https://doi.org/10.1097/md.0000000000007648

    Article  Google Scholar 

  46. Ziino C, Konopka JA, Ajiboye RM, Ledesma JB, Koltsov JCB, Cheng I (2018) Single position versus lateral-then-prone positioning for lateral interbody fusion and pedicle screw fixation. J Spine Surg 4:717–724. https://doi.org/10.21037/jss.2018.12.03

    Article  PubMed  PubMed Central  Google Scholar 

  47. Klopfenstein JD, Kim LJ, Feiz-Erfan I, Dickman CA (2006) Retroperitoneal approach for lumbar interbody fusion with anterolateral instrumentation for treatment of spondylolisthesis and degenerative foraminal stenosis. Surg Neurol 65:111–116. https://doi.org/10.1016/j.surneu.2005.08.021(discussion 116)

    Article  PubMed  Google Scholar 

  48. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L (2012) Stand-alone lateral interbody fusion for the treatment of low-grade degenerative spondylolisthesis. Sci World J 2012:456346. https://doi.org/10.1100/2012/456346

    Article  Google Scholar 

  49. Hartman C, Hemphill C, Godzik J, Walker CT, Wewel JT, Turner JD, Uribe JS (2019) Analysis of cost and 30-day outcomes in single-level transforaminal lumbar interbody fusion and less invasive, stand-alone lateral transpsoas interbody fusion. World Neurosurg 122:e1037–e1040

    Article  Google Scholar 

  50. Ahmadian A, Bach K, Bolinger B, Malham GM, Okonkwo DO, Kanter AS, Uribe JS (2015) Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci 22:740–746. https://doi.org/10.1016/j.jocn.2014.08.036

    Article  PubMed  Google Scholar 

  51. Tempel ZJ, Gandhoke GS, Bolinger BD, Okonkwo DO, Kanter AS (2015) Vertebral body fracture following stand-alone lateral lumbar interbody fusion (LLIF): report of two events out of 712 levels. Eur Spine J 24(Suppl 3):409–413. https://doi.org/10.1007/s00586-015-3845-x

    Article  PubMed  Google Scholar 

  52. Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9(Suppl 1):S95–S101. https://doi.org/10.1007/pl00010028

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Enago (https://www.enago.jp) for providing language help.

Funding

No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ouchida.

Ethics declarations

Conflicts of interest

For all authors, there are no conflicts of interest to declare.

Ethical approval

The study was approved by the Institutional Review Board of Konan Kosei Hospital, Konan, Japan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouchida, J., Kanemura, T., Satake, K. et al. Simultaneous single-position lateral interbody fusion and percutaneous pedicle screw fixation using O-arm-based navigation reduces the occupancy time of the operating room. Eur Spine J 29, 1277–1286 (2020). https://doi.org/10.1007/s00586-020-06388-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06388-6

Keywords

Navigation