Skip to main content
Log in

Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: a systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Aim

Interbody cages are commonly used to augment interbody fusion. Commonly used materials include titanium (Ti) and polyetheretherketone (PEEK), with their inherent differences. The aim of this study is to perform a systematic review and meta-analysis to compare between the various clinical and radiological outcomes of Ti and PEEK interbody spinal cages.

Methods

A systematic review and meta-analysis comparing clinical and radiological outcomes between Ti and PEEK interbody cages in patients undergoing spinal fusion was performed. PubMed, Scopus, Web of Science, Embase, and Cochrane Central Register of Controlled Trials database were searched. All studies that compared the clinical and radiological outcomes of patients who underwent Ti and PEEK cages were included. Subgroup analyses was performed to differentiate between patients who had cervical and lumbar interbody fusion.

Results

A total of 11 articles were identified, with a total of 743 patients. Spinal fusion rates at final follow-up did not differ between Ti and PEEK cages (OR 1.50, 95% CI 0.57–3.94, P = 0.41), although in patients undergoing lumbar fusion, Ti cages demonstrated superior fusion (OR 2.12, 95% CI 1.05–4.28, P = 0.04). In patients with non-infective etiologies, Ti cages had a higher rate of cage subsidence (RR 2.17, 95% CI 1.13–4.16, P = 0.02). Both types of cages had similar operating time, postoperative hematoma formation, neuropathic pain, segmental angle correction and postoperative clinical outcome improvement.

Conclusion

In non-infective lumbar spine conditions, Ti cage may be the superior option due to the higher fusion rate.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bagby GW (1988) Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics 11:931–934

    Article  CAS  Google Scholar 

  2. Elizabeth Chong MHP, Mobbs RJ, Walsh WR (2015) The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-12015-10546-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rao PJPM, Walsh WR, Mobbs RJ (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg 6:81–89

    Article  Google Scholar 

  4. Mario Cabraja SO, Koeppen D, Kroppenstedt S (2012) Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord 13:172

    Article  Google Scholar 

  5. Chen YWX, Lu X, Yang L, Yang H, Yuan W et al (2013) Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J 22:1539–1546

    Article  Google Scholar 

  6. Vadapalli SSK, Goel VK et al (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion—a finite element study. Spine (Phila Pa 1976) 31:E992-998

    Article  Google Scholar 

  7. Noiset OSY, Marchand-Brynaert J (1999) Fibronectin adsorption or/and covalent grafting on chemically modified PEEK film surfaces. J Biomater Sci Polym Ed 10:657–677

    Article  CAS  Google Scholar 

  8. De Bartolo LMS, Bader A, Drioli E (2001) The influence of polymeric membrane surface free energy on cell metabolic functions. J Mater Sci Mater Med 12:959–963

    Article  Google Scholar 

  9. Scott Seaman PK, Bydon M, Torner JC, Hitchon PW (2017) Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J Clin Neurosci 44:23–29

    Article  Google Scholar 

  10. Christof von Wrangel AK, Buchholz K-M, Süss O, Kombos T, Woitzik J, Vajkoczy P, Czabanka M (2017) Fusion rates of intervertebral polyetheretherketone and titanium cages without bone grafting in posterior interbody lumbar fusion surgery for degenerative lumbar instability. J Neurol Surg A Cent Eur Neurosurg 78:556–560

    Article  Google Scholar 

  11. Brandão R, Martins W, Arantes AA Jr, Gusmão SNS, Perrin G, Barrey C (2017) Titanium versus polyetheretherketone implants for vertebral body replacement in the treatment of 77 thoracolumbar spinal fractures. Surg Neurol Int 8:191. https://doi.org/10.4103/sni.sni_113_17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Junaid M, Rashid MU, Bukhari SS, Ahmed M (2018) Radiological and clinical outcomes in patients undergoing anterior cervical discectomy and fusion: comparing titanium and PEEK (polyetheretherketone) cages. Pak J Med Sci 34(6):1412–1417. https://doi.org/10.12669/pjms.346.15833

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cuzzocrea F, Ivone A, Jannelli E, Fioruzzi A, Ferranti E, Vanelli R, Benazzo F (2019) PEEK versus metal cages in posterior lumbar interbody fusion: a clinical and radiological comparative study. Musculoskelet Surg 103(3):237–241. https://doi.org/10.1007/s12306-018-0580-6

    Article  CAS  PubMed  Google Scholar 

  14. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schomacher M, Finger T, Koeppen D, Suess O, Vajkoczy P, Kroppenstedt S, Cabraja M (2014) Application of titanium and polyetheretherketone cages in the treatment of pyogenic spondylodiscitis. Clin Neurol Neurosurg 127:65–70. https://doi.org/10.1016/j.clineuro.2014.09.027

    Article  PubMed  Google Scholar 

  16. Sukrit Jain AEME, Ruttiman R, Daniels AH (2016) Advances in spinal interbody cages. Orthop Surg 8:278–284

    Article  Google Scholar 

  17. Markus Schomacher TF, Koeppen D, Süss O, Vajkoczy P, Kroppenstedt S, Cabraja M (2014) Application of titanium and polyetheretherketone cages in the treatment of pyogenic spondylodiscitis. Clin Neurol Neurosurg 127:65–70

    Article  Google Scholar 

  18. Bobby DK, Hsu WK, De Oliveira Jr GS, Saha S, Kim JYS (2014) Operative duration as an independent risk factor for postoperative complications in single-level lumbar fusion: an analysis of 4588 surgical cases. Spine (Phila Pa 1976) 39:510–520

    Article  Google Scholar 

  19. Nathan E, How JTS, Dvorak MF, Fisher CG, Kwon BK, Paquette S, Smith JS, Shaffrey CI, Ailon T (2019) Pseudarthrosis in adult and pediatric spinal deformity surgery: a systematic review of the literature and meta-analysis of incidence, characteristics, and risk factors. Neurosurg Rev 42:319–336

    Article  Google Scholar 

  20. Martin BI, Mirza SK, Comstock BA, Gray DT, Kreuter W, Deyo RA (2007) Reoperation rates following lumbar spine surgery and the influence of spinal fusion procedures. Spine (Phila Pa 1976) 32:382–387

    Article  Google Scholar 

  21. Yoon BJ, Xavier F, Walker BR, Grinberg S, Cammisa FP, Abjornson C (2016) Optimizing surface characteristics for cell adhesion and proliferation on titanium plasma spray coatings on polyetheretherketone. Spine J 16(10):1238–1243. https://doi.org/10.1016/j.spinee.2016.05.017

    Article  PubMed  Google Scholar 

  22. Sinclair SK, Konz GJ, Dawson JM, Epperson RT, Bloebaum RD (2012) Host bone response to polyetheretherketone versus porous tantalum implants for cervical spinal fusion in a goat model. Spine (Phila Pa 1976) 37:E571-580

    Article  Google Scholar 

  23. Cuzzocrea F, Ivone A, Jannelli E, Fioruzzi A, Ferranti E, Vanelli R, Benazzo F (2019) PEEK versus metal cages in posterior lumbar interbody fusion: a clinical and radiological comparative study. Musculoskelet Surg 103:237–241

    Article  CAS  Google Scholar 

  24. Muhammad Junaid MUR, Bukhari SS, Ahmed M (2018) Radiological and clinical outcomes in patients undergoing anterior cervical discectomy and fusion: comparing titanium and PEEK (polyetheretherketone) cages. Pak J Med Sci 34:1412–1417

    PubMed  PubMed Central  Google Scholar 

  25. Tanida S, Fujibayashi S, Otsuki B, Masamoto K, Takahashi Y, Nakayama T, Matsuda S (2016) Vertebral endplate cyst as a predictor of nonunion after lumbar interbody fusion: comparison of titanium and polyetheretherketone cages. Spine (Phila Pa 1976) 41:E1216–E1222

    Article  Google Scholar 

  26. Osamu Nemoto TA, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A (2014) Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J 23:2150–2155

    Article  Google Scholar 

  27. Chou Y-C, Chen D-C, Hsieh WA, Chen W-F, Yen P-S, Harnod T, Chiou T-L, Chang Y-L, Su C-F, Lin S-Z, Chen S-Y (2008) Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci 15:1240–1245

    Article  CAS  Google Scholar 

  28. Niu CCLJ, Chen WJ, Chen LH (2010) Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: Titanium cages versus polyetheretherketone (PEEK) cages. J Spinal Disord Tech 23:310–316

    Article  Google Scholar 

  29. Ryan C, Hofler KS, Martin B, Wemhoff M, Jones GA (2018) Risk of pseudoarthrosis after spinal fusion: analysis from the healthcare cost and utilization project. World Neurosurg 120:e194–e202

    Article  Google Scholar 

  30. Dirk Zajonz A-CF, von der Höh N, Voelker A, Moche M, Gulow J, Heyde C-E (2014) Is the radiographic subsidence of stand-alone cages associated with adverse clinical outcomes after cervical spine fusion? An observational cohort study with 2-year follow-up outcome scoring. Patient Saf Surg 8:43

    PubMed  PubMed Central  Google Scholar 

  31. Chang-Hyun Lee K-JK, Hyun S-J, Yeom JS, Jahng T-A, Kim H-J (2015) Subsidence as of 12 months after single-level anterior cervical inter-body fusion. Is it related to clinical outcomes? Acta Neurochir (Wien) 157:1063–1068

    Article  Google Scholar 

  32. Prashanth J, Rao KP, Giang G, Maharaj MM, Phan S, Mobbs RJ (2017) Subsidence following anterior lumbar interbody fusion (ALIF): a prospective study. J Spine Surg 2:168–175

    Google Scholar 

  33. Isaac O, Karikari DJ, Owens TR, Gottfried O, Hodges TR, Nimjee SM, Bagley CA (2014) Impact of subsidence on clinical outcomes and radiographic fusion rates in anterior cervical discectomy and fusion: a systematic review. J Spinal Disord Tech 27:1–10

    Article  Google Scholar 

  34. Formica M, Vallerga D, Zanirato A, Cavagnaro L, Basso M, Divano S, Mosconi L, Quarto E, Siri G, Felli L (2020) Fusion rate and influence of surgery-related factors in lumbar interbody arthrodesis for degenerative spine diseases: a meta-analysis and systematic review. Musculoskelet Surg 104(1):1–15. https://doi.org/10.1007/s12306-019-00634-x

    Article  CAS  PubMed  Google Scholar 

  35. Sans N, Faruch M, Lapègue F, Ponsot A, Chiavassa H, Railhac J-J (2012) Infections of the spinal column-spondylodiscitis. Diagn Interv Imaging 93:520–529

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Annelissa Chia, senior medical librarian at Yong Loo Lin School of Medicine, National University Singapore, for her assistance in deriving the search strategy. This work was not supported by any funding agencies or individuals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwee Weng Dennis Hey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This paper does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, JH., Cheong, C.K. & Hey, H.W.D. Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: a systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages. Eur Spine J 30, 1285–1295 (2021). https://doi.org/10.1007/s00586-021-06748-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06748-w

Keywords

Navigation