Skip to main content

Advertisement

Log in

Artificial intelligence predicts disk re-herniation following lumbar microdiscectomy: development of the “RAD” risk profile

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Surgical treatment of herniated lumbar intervertebral disks is a common procedure worldwide. However, recurrent herniated nucleus pulposus (re-HNP) may develop, complicating outcomes and patient management. The purpose of this study was to utilize machine-learning (ML) analytics to predict lumbar re-HNP, whereby a personalized risk prediction can be developed as a clinical tool.

Methods

A retrospective, single center study was conducted of 2630 consecutive patients that underwent lumbar microdiscectomy (mean follow-up: 22-months). Various preoperative patient pain/disability/functional profiles, imaging parameters, and anthropomorphic/demographic metrics were noted. An Extreme Gradient Boost (XGBoost) classifier was implemented to develop a predictive model identifying patients at risk for re-HNP. The model was exported to a web application software for clinical utility.

Results

There were 1608 males and 1022 females, 114 of whom experienced re-HNP. Primary herniations were central (65.8%), paracentral (17.6%), and far lateral (17.1%). The XGBoost algorithm identified multiple re-HNP predictors and was incorporated into an open-access web application software, identifying patients at low or high risk for re-HNP. Preoperative VAS leg, disability, alignment parameters, elevated body mass index, symptom duration, and age were the strongest predictors.

Conclusions

Our predictive modeling via an ML approach of our large-scale cohort is the first study, to our knowledge, that has identified significant risk factors for the development of re-HNP after initial lumbar decompression. We developed the re-herniation after decompression (RAD) profile index that has been translated into an online screening tool to identify low–high risk patients for re-HNP. Additional validation is needed for potential global implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Papagiannis GI, Triantafyllou AI, Konstantina YG et al (2019) Biomechanical factors could affect lumbar disc reherniation after microdiscectomy. J Orthop Sports Med 1:46–50

    Article  Google Scholar 

  2. Weinstein JN, Lurie JD, Tosteson TD et al (2006) Surgical vs nonoperative treatment for lumbar disk herniation: the Spine patient outcomes research trial (SPORT) observational cohort. JAMA 296:2451–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinto RZ, Maher CG, Ferreira ML et al (2012) Drugs for relief of pain in patients with sciatica: systematic review and meta-analysis. BMJ 344:e497

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chou R, Atlas SJ, Stanos SP, Rosenquist RW (2009) Nonsurgical interventional therapies for low back pain: a review of the evidence for an American Pain Society clinical practice guideline. Spine 34:1078–1093

    Article  PubMed  Google Scholar 

  5. Radcliff K, Hilibrand A, Lurie JD et al (2012) The impact of epidural steroid injections on the outcomes of patients treated for lumbar disc herniation: a subgroup analysis of the SPORT trial. J Bone Joint Surg Am 94:1353

    Article  PubMed  PubMed Central  Google Scholar 

  6. Virk SS, Diwan A, Phillips FM et al (2017) What is the rate of revision discectomies after primary discectomy on a national scale? Clin Orthop Relat Res 475:2752–2762

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weinstein JN, Tosteson TD, Lurie JD et al (2006) Surgical vs nonoperative treatment for lumbar disk herniation: the Spine patient outcomes research trial (SPORT): a randomized trial. JAMA 296:2441–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grasso G, Torregrossa F, Landi A (2019) Prevention of lumbar reherniation by the intraoperative use of a radiofrequency bipolar device: a case-control study. J Craniovertebr Junction Spine 10:94–99

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thomé C, Klassen PD, Bouma GJ et al (2018) Annular closure in lumbar microdiscectomy for prevention of reherniation: a randomized clinical trial. Spine J 18:2278–2287

    Article  PubMed  Google Scholar 

  10. Carragee EJ, Han MY, Suen PW, Kim D (2003) Clinical outcomes after lumbar discectomy for sciatica: the effects of fragment type and anular competence. J Bone Joint Surg Am 85:102–108

    Article  PubMed  Google Scholar 

  11. Wera GD, Marcus RE, Ghanayem AJ, Bohlman HH (2008) Failure within one year following subtotal lumbar discectomy. J Bone Joint Surg Am 90:10–15

    Article  PubMed  Google Scholar 

  12. Rogers LA (1988) Experience with limited versus extensive disc removal in patients undergoing microsurgical operations for ruptured lumbar discs. Neurosurg 22:82–85

    Article  CAS  Google Scholar 

  13. O’Sullivan MG, Connolly AE, Buckley TF (1990) Recurrent lumbar disc protrusion. Br J Neurosurg 4:319–325

    Article  PubMed  Google Scholar 

  14. Lebow RL, Adogwa O, Parker SL et al (2011) Asymptomatic same-site recurrent disc herniation after lumbar discectomy: results of a prospective longitudinal study with 2-year serial imaging. Spine 36:2147–2151

    Article  PubMed  Google Scholar 

  15. Ebeling U, Kalbarcyk H, Reulen HJ (1989) Microsurgical reoperation following lumbar disc surgery. timing, surgical findings, and outcome in 92 patients. J Neurosurg 70:397–404

    Article  CAS  PubMed  Google Scholar 

  16. Shimia M, Babaei-Ghazani A, Sadat BE et al (2013) Risk factors of recurrent lumbar disk herniation. Asian J Neurosurg 8:93–96

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ambrossi GLG, McGirt MJ, Sciubba DM et al (2009) Recurrent lumbar disc herniation after single-level lumbar discectomy: incidence and health care cost analysis. Neurosurg 65:574–578 (discussion 578)

    Article  Google Scholar 

  18. Shepard N, Cho W (2019) Recurrent lumbar disc herniation: a review. Global Spine J 9:202–209

    Article  PubMed  Google Scholar 

  19. Parker SL, Grahovac G, Vukas D et al (2013) Cost savings associated with prevention of recurrent lumbar disc herniation with a novel annular closure device: a multicenter prospective cohort study. J Neurol Surg A Cent Eur Neurosurg 74:285–289

    Article  PubMed  Google Scholar 

  20. Belykh E, Krutko AV, Baykov ES et al (2017) Preoperative estimation of disc herniation recurrence after microdiscectomy: predictive value of a multivariate model based on radiographic parameters. Spine J 17:390–400

    Article  PubMed  Google Scholar 

  21. Mallow GM, Siyaji ZK, Galbusera F, et al (2020) Intelligence-based spine care model: a new era of research and clinical decision-making. Global Spine J 2192568220973984

  22. Chen T, Guestrin C (2016). XGBoost: A Scalable Tree Boosting System. In: proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery, New York, NY, USA, pp 785–794

  23. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. The J Mach Learn Res. 12:2825–2830

    Google Scholar 

  24. Thio QCBS, Karhade AV, Ogink PT et al (2018) Can machine-learning techniques be used for 5-year survival prediction of patients with chondrosarcoma? Clin Orthop Relat Res 476:2040–2048

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karhade AV, Thio QCBS, Ogink PT et al (2019) Predicting 90-Day and 1-year mortality in spinal metastatic disease: development and internal validation. Neurosurg 85:E671–E681

    Article  Google Scholar 

  26. Thio QCBS, Karhade AV, Ogink PT et al (2020) Development and internal validation of machine learning algorithms for preoperative survival prediction of extremity metastatic disease. Clin Orthop Relat Res 478:322–333

    Article  PubMed  Google Scholar 

  27. Steyerberg EW, Vergouwe Y (2014) Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J 35:1925–1931

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lipton ZC, Elkan C, Narayanaswamy B (2014) Thresholding Classifiers to Maximize F1 Score. arXiv [stat.ML]

  29. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  30. Rodríguez-Pérez R, Bajorath J (2020) Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. J Comput Aided Mol Des 34:1013–1026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lundberg S, Lee S-I (2017) A unified approach to interpreting model predictions. arXiv [cs.AI]

  32. Kim JM, Lee SH, Ahn Y et al (2007) Recurrence after successful percutaneous endoscopic lumbar discectomy. Minim Invasive Neurosurg 50:82–85

    Article  CAS  PubMed  Google Scholar 

  33. Staartjes VE, de Wispelaere MP, Vandertop WP, Schröder ML (2019) Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-specific modeling. Spine J 19:853–861

    Article  PubMed  Google Scholar 

  34. Chun S-W, Lim C-Y, Kim K et al (2017) The relationships between low back pain and lumbar lordosis: a systematic review and meta-analysis. Spine J 17:1180–1191

    Article  PubMed  Google Scholar 

  35. Yao Y, Liu H, Zhang H et al (2017) Risk factors for recurrent herniation after percutaneous endoscopic lumbar Discectomy. World Neurosurg 100:1–6

    Article  PubMed  Google Scholar 

  36. Meredith DS, Huang RC, Nguyen J, Lyman S (2010) Obesity increases the risk of recurrent herniated nucleus pulposus after lumbar microdiscectomy. Spine J 10:575–580

    Article  PubMed  Google Scholar 

  37. Callaghan JP, McGill SM (2001) Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech 16:28–37

    Article  CAS  Google Scholar 

  38. Wilder DG, Pope MH, Frymoyer JW (1988) The biomechanics of lumbar disc herniation and the effect of overload and instability. J Spinal Disord 1:16–32

    Article  CAS  PubMed  Google Scholar 

  39. Ghezelbash F, Shirazi-Adl A, Plamondon A et al (2017) Obesity and obesity shape markedly influence Spine biomechanics: a subject-specific risk assessment model. Ann Biomed Eng 45:2373–2382

    Article  PubMed  Google Scholar 

  40. Moliterno JA, Knopman J, Parikh K et al (2010) Results and risk factors for recurrence following single-level tubular lumbar microdiscectomy. J Neurosurg Spine 12:680–686

    Article  PubMed  Google Scholar 

  41. Kara B, Tulum Z, Acar U (2005) Functional results and the risk factors of reoperations after lumbar disc surgery. Eur Spine J 14:43–48

    Article  PubMed  Google Scholar 

  42. Huang W, Han Z, Liu J et al (2016) Risk factors for recurrent lumbar Disc herniation: a systematic review and meta-analysis. Medicine 95(2):e2378

    Article  PubMed  PubMed Central  Google Scholar 

  43. Siccoli A, Schröder ML, Staartjes VE (2020) Association of age with incidence and timing of recurrence after microdiscectomy for lumbar disc herniation. Eur Spine J. https://doi.org/10.1007/s00586-020-06692-1

    Article  PubMed  Google Scholar 

  44. Abdu RW, Abdu WA, Pearson AM et al (2017) Reoperation for recurrent intervertebral disc herniation in the Spine patient outcomes research trial: analysis of rate, risk factors, and outcome. Spine 42:1106–1114

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wilke H-J, Ressel L, Heuer F et al (2013) Can prevention of a reherniation be investigated? Establishment of a herniation model and experiments with an anular closure device. Spine 38:E587–E593

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miwa S, Yokogawa A, Kobayashi T et al (2015) Risk factors of recurrent lumbar disk herniation: a single center study and review of the literature. J Spinal Disord Tech 28:E265–E269

    Article  PubMed  Google Scholar 

  47. Saftić R, Grgić M, Ebling B, Splavski B (2006) Case-control study of risk factors for lumbar intervertebral disc herniation in croatian island populations. Croat Med J 47:593–600

    PubMed  PubMed Central  Google Scholar 

  48. Rihn JA, Hilibrand AS, Radcliff K et al (2011) Duration of symptoms resulting from lumbar disc herniation: effect on treatment outcomes: analysis of the Spine patient outcomes research trial (SPORT). J Bone Joint Surg Am 93:1906–1914

    Article  PubMed  PubMed Central  Google Scholar 

  49. Movassaghi K, Basques BA, Louie PK et al (2019) The Duration of symptoms does not impact clinical outcomes following lumbar decompression surgery. Spine 44:305–308

    Article  PubMed  Google Scholar 

  50. Ahsan K, Najmus-Sakeb HA et al (2012) Discectomy for primary and recurrent prolapse of lumbar intervertebral discs. J Orthop Surg 20:7–10

    Article  Google Scholar 

  51. Cinotti G, Roysam GS, Eisenstein SM, Postacchini F (1998) Ipsilateral recurrent lumbar disc herniation. a prospective, controlled study. J Bone Joint Surg Br 80:825–832

    Article  CAS  PubMed  Google Scholar 

  52. Morgan-Hough CVJ, Jones PW, Eisenstein SM (2003) Primary and revision lumbar discectomy. a 16-year review from one centre. J Bone Joint Surg Br 85:871–874

    Article  CAS  PubMed  Google Scholar 

  53. Protopsaltis TS, Lafage R, Smith JS et al (2018) The lumbar pelvic angle, the lumbar component of the T1 pelvic angle, correlates with HRQOL, PI-LL mismatch, and it predicts global alignment. Spine 43:681–687

    Article  PubMed  Google Scholar 

  54. Rothenfluh DA, Mueller DA, Rothenfluh E, Min K (2015) Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J 24:1251–1258

    Article  PubMed  Google Scholar 

  55. Obeid I, Bourghli A, Boissière L et al (2014) Complex osteotomies vertebral column resection and decancellation. Eur J Orthop Surg Traumatol 24(Suppl 1):S49-57

    Article  PubMed  Google Scholar 

  56. Obeid I, Boissière L, Vital J-M, Bourghli A (2015) Osteotomy of the spine for multifocal deformities. Eur Spine J 24(Suppl 1):S83-92

    Article  PubMed  Google Scholar 

  57. Chang H-K, Chang H-C, Wu J-C et al (2016) Scoliosis may increase the risk of recurrence of lumbar disc herniation after microdiscectomy. J Neurosurg Spine 24:586–591

    Article  PubMed  Google Scholar 

  58. Wu W, Chen Y, Yu L et al (2019) Coronal and sagittal spinal alignment in lumbar disc herniation with scoliosis and trunk shift. J Orthop Surg Res 14:264

    Article  PubMed  PubMed Central  Google Scholar 

  59. Endo K, Suzuki H, Tanaka H et al (2010) Sagittal spinal alignment in patients with lumbar disc herniation. Eur Spine J 19:435–438

    Article  PubMed  Google Scholar 

  60. Obeid I, Berjano P, Lamartina C et al (2019) Classification of coronal imbalance in adult scoliosis and spine deformity: a treatment-oriented guideline. Eur Spine J 28:94–113

    Article  PubMed  Google Scholar 

  61. Matsui H, Ohmori K, Kanamori M et al (1998) Significance of sciatic scoliotic list in operated patients with lumbar disc herniation. Spine 23:338–342

    Article  CAS  PubMed  Google Scholar 

  62. Beretta L, Santaniello A (2016) Nearest neighbor imputation algorithms: a critical evaluation. BMC Med Inform Decis Mak 16(Suppl 3):74

    Article  PubMed  PubMed Central  Google Scholar 

  63. Batista GE, Bazzan ALC, Monard MC (2003). Balancing training data for automated annotation of keywords: a case study. In: WOB, pp 10–18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Samartzis.

Ethics declarations

Conflicts of interests

The authors have no competing or financial conflicts of interest in relation to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, G.K., Siyaji, Z.K., Mallow, G.M. et al. Artificial intelligence predicts disk re-herniation following lumbar microdiscectomy: development of the “RAD” risk profile. Eur Spine J 30, 2167–2175 (2021). https://doi.org/10.1007/s00586-021-06866-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06866-5

Keywords

Navigation