Skip to main content

Advertisement

Log in

Artificial intelligence in spine care: current applications and future utility

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The field of artificial intelligence is ever growing and the applications of machine learning in spine care are continuously advancing. Given the advent of the intelligence-based spine care model, understanding the evolution of computation as it applies to diagnosis, treatment, and adverse event prediction is of great importance. Therefore, the current review sought to synthesize findings from the literature at the interface of artificial intelligence and spine research.

Methods

A narrative review was performed based on the literature of three databases (MEDLINE, CINAHL, and Scopus) from January 2015 to March 2021 that examined historical and recent advancements in the understanding of artificial intelligence and machine learning in spine research. Studies were appraised for their role in, or description of, advancements within image recognition and predictive modeling for spinal research. Only English articles that fulfilled inclusion criteria were ultimately incorporated in this review.

Results

This review briefly summarizes the history and applications of artificial intelligence and machine learning in spine. Three basic machine learning training paradigms: supervised learning, unsupervised learning, and reinforced learning are also discussed. Artificial intelligence and machine learning have been utilized in almost every facet of spine ranging from localization and segmentation techniques in spinal imaging to pathology specific algorithms which include but not limited to; preoperative risk assessment of postoperative complications, screening algorithms for patients at risk of osteoporosis and clustering analysis to identify subgroups within adolescent idiopathic scoliosis. The future of artificial intelligence and machine learning in spine surgery is also discussed with focusing on novel algorithms, data collection techniques and increased utilization of automated systems.

Conclusion

Improvements to modern-day computing and accessibility to various imaging modalities allow for innovative discoveries that may arise, for example, from management. Given the imminent future of AI in spine surgery, it is of great importance that practitioners continue to inform themselves regarding AI, its goals, use, and progression. In the future, it will be critical for the spine specialist to be able to discern the utility of novel AI research, particularly as it continues to pervade facets of everyday spine surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  2. Samartzis D, Alini M, An HS et al (2018) Precision spine care: a new era of discovery, innovation, and global impact. Glob Spine J 8:321–322

    Article  Google Scholar 

  3. Mallow GM, Siyaji ZK, Galbusera F et al (2021) Intelligence-based spine care model: a new era of research and clinical decision-making. Glob Spine J 11:135–145

    Article  Google Scholar 

  4. Langerhuizen DWG, Janssen SJ, Mallee WH et al (2019) What are the applications and limitations of artificial intelligence for fracture detection and classification in orthopaedic trauma imaging? A systematic review. Clin Orthop Relat Res 477:2482–91

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ames CP, Smith JS, Pellisé F et al (2019) Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine 44:915–926

    Article  PubMed  Google Scholar 

  6. Joshi RS, Haddad AF, Lau D et al (2019) Artificial intelligence for adult spinal deformity. Neurospine 16:686–694

    Article  PubMed  PubMed Central  Google Scholar 

  7. Louie PK, Harada GK, Sayari AJ et al (2020) Etiology-based classification of adjacent segment disease following lumbar spine fusion. HSS J 16:130–136

    Article  PubMed  Google Scholar 

  8. Harada GK, Siyaji ZK, Younis S et al (2020) Imaging in spine surgery: current concepts and future directions. Spine Surg Relat Res 4:99–110

    Article  PubMed  Google Scholar 

  9. Huber FA, Stutz S, Vittoria de Martini I et al (2019) Qualitative versus quantitative lumbar spinal stenosis grading by machine learning supported texture analysis-experience from the LSOS study cohort. Eur J Radiol 114:45–50

    Article  PubMed  Google Scholar 

  10. Meyer A, Zverinski D, Pfahringer B et al (2018) Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med 6:905–914

    Article  PubMed  Google Scholar 

  11. Gowd AK, Agarwalla A, Amin NH et al (2019) Construct validation of machine learning in the prediction of short-term postoperative complications following total shoulder arthroplasty. J Shoulder Elbow Surg 28:e410–e421

    Article  PubMed  Google Scholar 

  12. Awan SE, Bennamoun M, Sohel F et al (2019) Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. ESC Heart Fail 6:428–435

    Article  PubMed  PubMed Central  Google Scholar 

  13. McGirt MJ, Sivaganesan A, Asher AL et al (2015) Prediction model for outcome after low-back surgery: individualized likelihood of complication, hospital readmission, return to work, and 12-month improvement in functional disability. Neurosurg Focus 39:E13

    Article  PubMed  Google Scholar 

  14. Kaplan A, Haenlein M (2019) Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz 62:15–25

    Article  Google Scholar 

  15. Russell S, Norvig P (2009) Artificial intelligence: a modern approach

  16. Haenlein M, Kaplan A (2019) A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif Manage Rev 61:5–14

    Article  Google Scholar 

  17. Hawkins S, Wang H, Liu Y et al (2016) Predicting malignant nodules from screening CTs. J Thorac Oncol 11:2120–2128

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kalinin AA, Higgins GA, Reamaroon N et al (2018) Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics 19:629–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Some Studies in Machine Learning using the game of checkers | IBM Journals and Magazine | IEEE Xplore. https://ieeexplore.ieee.org/document/5392560. Accessed March 15, 2021

  20. Baştanlar Y, Ozuysal M (2014) Introduction to machine learning. Methods Mol Biol 1107:105–128

    Article  PubMed  Google Scholar 

  21. Traverso A, Dankers FJWM, Osong B et al (2019) Diving deeper into models. In: Kubben P, Dumontier M, Dekker A (eds) Fundamentals of clinical data science. Springer, Cham

    Google Scholar 

  22. Vollmer S, Mateen BA, Bohner G et al (2020) Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ 368:16927. https://doi.org/10.1136/bmj.l6927

    Article  Google Scholar 

  23. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell Res https://arxiv.org/abs/cs/9605103v1. Accessed March 15, 2021

  24. Nowé A, Vrancx P, De Hauwere Y-M (2012) Game theory and multi-agent reinforcement learning. In: Wiering M, van Otterlo M (eds) Reinforcement learning. Springer, Berlin, pp 441–470

    Chapter  Google Scholar 

  25. Producing flexible behaviours in simulated environments. Deepmind. Available at /blog/article/producing-flexible-behaviours-simulated-environments. Accessed March 15, 2021.

  26. Esteva A, Robicquet A, Ramsundar B et al (2019) A guide to deep learning in healthcare. Nat Med 25:24–29

    Article  CAS  PubMed  Google Scholar 

  27. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  PubMed  Google Scholar 

  28. Altaf-Ul-Amin M, Afendi FM, Kiboi SK et al (2014) Systems biology in the context of big data and networks. Biomed Res Int 2014:428570

    PubMed  PubMed Central  Google Scholar 

  29. Azimi P, Mohammadi HR, Benzel EC et al (2015) Artificial neural networks in neurosurgery. J Neurol Neurosurg Psychiatry 86:251–256

    Article  PubMed  Google Scholar 

  30. Gogul I, Kumar VS (2017) Flower species recognition system using convolution neural networks and transfer learning. In: 2017 Fourth international conference on signal processing, communication and networking (ICSCN), pp 1–6

  31. Yasaka K, Akai H, Kunimatsu A et al (2018) Deep learning with convolutional neural network in radiology. Jpn J Radiol 36(257–7):2

    Google Scholar 

  32. Iglesias LL, Bellón PS, del Barrio AP et al (2021) A primer on deep learning and convolutional neural networks for clinicians. Insights Imaging 12:117

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee J-G, Jun S, Cho Y-W et al (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18:570–584

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chang M, Canseco JA, Nicholson KJ et al (2020) The role of machine learning in spine surgery: the future is now. Front Surg 7:54–54

    Article  PubMed  PubMed Central  Google Scholar 

  35. Galbusera F, Casaroli G, Bassani T (2019) Artificial intelligence and machine learning in spine research. JOR Spine. https://doi.org/10.1002/jsp2.1044

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shiraishi J, Li Q, Appelbaum D et al (2011) Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med 41:449–462

    Article  PubMed  Google Scholar 

  37. Dasiopoulou S, Mezaris V, Kompatsiaris I et al (2005) Knowledge-assisted semantic video object detection. IEEE Trans Circuits Syst Video Technol 15:1210–1224

    Article  Google Scholar 

  38. Oktay AB, Akgul YS (2013) Simultaneous localization of lumbar vertebrae and intervertebral discs with SVM-based MRF. IEEE Trans Biomed Eng 60:2375–2383

    Article  PubMed  Google Scholar 

  39. Chen W, Le LH, Lou EHM (2016) Reliability of the axial vertebral rotation measurements of adolescent idiopathic scoliosis using the center of lamina method on ultrasound images: in vitro and in vivo study. Eur Spine J 25:3265–3273

    Article  PubMed  Google Scholar 

  40. Jakubicek R, Chmelik J, Jan J et al (2020) Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines. Comput Methods Programs Biomed 183:105081

    Article  PubMed  Google Scholar 

  41. Jimenez-Pastor A, Alberich-Bayarri A, Fos-Guarinos B et al (2020) Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data. Radiol Med 125:48–56

    Article  PubMed  Google Scholar 

  42. Fan G, Liu H, Wu Z et al (2019) Deep learning-based automatic segmentation of lumbosacral nerves on CT for spinal intervention: a translational study. AJNR Am J Neuroradiol 40:1074–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sayari AJ, Pardo C, Basques BA et al (2019) Review of robotic-assisted surgery: what the future looks like through a spine oncology lens. Ann Transl Med 7:224

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shapiro LG, Stockman GC (2001) Computer vision. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  45. Pazos V, Cheriet F, Labelle H et al (2002) 3D reconstruction and analysis of the whole trunk surface for non-invasive follow-up of scoliotic deformities. Stud Health Technol Inform 91:296–299

    PubMed  Google Scholar 

  46. Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. https://doi.org/10.1186/s12880-015-0068-x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mirzaalian H, Wels M, Heimann T et al (2013) Fast and robust 3D vertebra segmentation using statistical shape models. Conf Proc IEEE Eng Med Biol Soc 2013:3379–3382

    Google Scholar 

  48. Lessmann N, van Ginneken B, de Jong PA et al (2019) Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med Image Anal 53:142–155

    Article  PubMed  Google Scholar 

  49. Rak M, Steffen J, Meyer A et al (2019) Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in MRI. Comput Methods Programs Biomed 177:47–56

    Article  PubMed  Google Scholar 

  50. Mehta SD, Sebro R (2020) Computer-aided detection of incidental lumbar spine fractures from routine dual-energy x-ray absorptiometry (DEXA) studies using a support vector machine (SVM) classifier. J Digit Imaging 33:204–210

    Article  PubMed  Google Scholar 

  51. Li SSW, Chu CCF, Chow DHK (2019) EMG-based lumbosacral joint compression force prediction using a support vector machine. Med Eng Phys 74:115–120

    Article  PubMed  Google Scholar 

  52. Sharma GB, Robertson DD, Laney DA et al (2016) Machine learning based analytics of micro-MRI trabecular bone microarchitecture and texture in type 1 Gaucher disease. J Biomech 49:1961–1968

    Article  PubMed  Google Scholar 

  53. Wang J, Yan D, Zhao A et al (2019) Discovery of potential biomarkers for osteoporosis using LC-MS/MS metabolomic methods. Osteoporos Int 30:1491–1499

    Article  CAS  PubMed  Google Scholar 

  54. Valentinitsch A, Trebeschi S, Kaesmacher J et al (2019) Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 30:1275–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roth HR, Wang Y, Yao J, et al (2016) Deep convolutional networks for automated detection of posterior-element fractures on spine CT. http://arxiv.org/abs/160200020 [cs] 97850P.

  56. Badgeley MA, Zech JR, Oakden-Rayner L, et al (2018) Deep Learning Predicts Hip Fracture using Confounding Patient and Healthcare Variables. Available at http://arxiv.org/abs/1811.03695. Accessed August 15, 2020.

  57. Kong SH, Ahn D, Kim BR et al (2020) A novel fracture prediction model using machine learning in a community-based cohort. JBMR plus 4:e10337–e10337

    Article  PubMed  PubMed Central  Google Scholar 

  58. Muehlematter UJ, Mannil M, Becker AS et al (2019) Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur Radiol 29:2207–2217

    Article  PubMed  Google Scholar 

  59. Zhang M, Gong H, Zhang K et al (2019) Prediction of lumbar vertebral strength of elderly men based on quantitative computed tomography images using machine learning. Osteoporos Int 30:2271–2282

    Article  CAS  PubMed  Google Scholar 

  60. Kruse C, Eiken P, Vestergaard P (2017) Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporos Int 28:819–832

    Article  CAS  PubMed  Google Scholar 

  61. Nam KH, Seo I, Kim DH et al (2019) Machine learning model to predict osteoporotic spine with hounsfield units on lumbar computed tomography. J Korean Neurosurg Soc 62:442–449

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dimai HP, Ljuhar R, Ljuhar D et al (2019) Assessing the effects of long-term osteoporosis treatment by using conventional spine radiographs: results from a pilot study in a sub-cohort of a large randomized controlled trial. Skeletal Radiol 48:1023–1032

    Article  PubMed  Google Scholar 

  63. Jamaludin A, Fairbank J, Harding I et al (2020) Identifying scoliosis in population-based cohorts: automation of a validated method based on total body dual energy x-ray absorptiometry scans. Calcif Tissue Int 106:378–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bertoncelli CM, Bertoncelli D, Elbaum L et al (2018) Validation of a clinical prediction model for the development of neuromuscular scoliosis: a multinational study. Pediatr Neurol 79:14–20

    Article  PubMed  Google Scholar 

  65. Langlais T, Verdun S, Compagnon R et al (2020) Prediction of clinical height gain from surgical posterior correction of idiopathic scoliosis. J Neurosurg Spine 33:507–512

    Article  Google Scholar 

  66. Beaudette SM, Zwambag DP, Graham RB et al (2019) Discriminating spatiotemporal movement strategies during spine flexion-extension in healthy individuals. Spine J 19:1264–75

    Article  PubMed  Google Scholar 

  67. Thong W, Parent S, Wu J et al (2016) Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models. Eur Spine J 25:3104–3113

    Article  PubMed  Google Scholar 

  68. Shen J, Parent S, Wu J et al (2020) Towards a new 3D classification for adolescent idiopathic scoliosis. Spine Deform 8:387–396

    Article  PubMed  Google Scholar 

  69. García-Cano E, Arámbula Cosío F, Duong L et al (2018) Prediction of spinal curve progression in adolescent idiopathic scoliosis using random forest regression. Comput Biol Med 103:34–43

    Article  PubMed  Google Scholar 

  70. Pasha S, Mac-Thiong J-M (2020) Defining criteria for optimal lumbar curve correction following the selective thoracic fusion surgery in Lenke 1 adolescent idiopathic scoliosis: developing a decision tree. Eur J Orthop Surg Traumatol Orthop Traumatol 30:513–522

    Article  Google Scholar 

  71. Mannil M, Burgstaller JM, Thanabalasingam A et al (2018) Texture analysis of paraspinal musculature in MRI of the lumbar spine: analysis of the lumbar stenosis outcome study (LSOS) data. Skeletal Radiol 47:947–954

    Article  PubMed  Google Scholar 

  72. Mannil M, Burgstaller JM, Held U et al (2019) Correlation of texture analysis of paraspinal musculature on MRI with different clinical endpoints: Lumbar Stenosis Outcome Study (LSOS). Eur Radiol 29:22–30

    Article  PubMed  Google Scholar 

  73. Tan WK, Hassanpour S, Heagerty PJ et al (2018) Comparison of natural language processing rules-based and machine-learning systems to identify lumbar spine imaging findings related to low back pain. Acad Radiol 25:1422–1432

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jiang N, Luk KD-K, Hu Y (2017) A machine learning-based surface electromyography topography evaluation for prognostic prediction of functional restoration rehabilitation in chronic low back pain. Spine (Phila Pa 1976) 42:1635–42

    Article  Google Scholar 

  75. Staartjes VE, Quddusi A, Klukowska AM et al (2020) Initial classification of low back and leg pain based on objective functional testing: a pilot study of machine learning applied to diagnostics. Eur Spine J 29:1702–1708

    Article  PubMed  Google Scholar 

  76. Oude Nijeweme-d’Hollosy W, van Velsen L, Poel M et al (2018) Evaluation of three machine learning models for self-referral decision support on low back pain in primary care. Int J Med Inform 110:31–41

    Article  PubMed  Google Scholar 

  77. Divya KV, Mukherjee D, Shree V et al (2020) A novel approach towards early detection of obliteration in lumbar lordosis. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf 2020:4042–4045

    Google Scholar 

  78. Zhang Y, Fatemi P, Medress Z et al (2020) A predictive-modeling based screening tool for prolonged opioid use after surgical management of low back and lower extremity pain. Spine J 20:1184–1195

    Article  PubMed  Google Scholar 

  79. Jarvik JG, Gold LS, Tan K et al (2018) Long-term outcomes of a large, prospective observational cohort of older adults with back pain. Spine J 18:1540–1551

    Article  PubMed  Google Scholar 

  80. Liew BXW, Rugamer D, De Nunzio AM et al (2020) Interpretable machine learning models for classifying low back pain status using functional physiological variables. Eur Spine J 29:1845–1859

    Article  PubMed  Google Scholar 

  81. Scheer JK, Smith JS, Schwab F et al (2017) Development of a preoperative predictive model for major complications following adult spinal deformity surgery. J Neurosurg Spine 26:736–743

    Article  PubMed  Google Scholar 

  82. Kadoury S, Mandel W, Roy-Beaudry M et al (2017) 3-D morphology prediction of progressive spinal deformities from probabilistic modeling of discriminant manifolds. IEEE Trans Med Imaging 36:1194–1204

    Article  PubMed  Google Scholar 

  83. Durand WM, Daniels AH, Hamilton DK et al (2020) Artificial intelligence models predict operative versus nonoperative management of patients with adult spinal deformity with 86% accuracy. World Neurosurg 141:e239–e253

    Article  PubMed  Google Scholar 

  84. Kim K, Kim S, Lee YH et al (2018) Performance of the deep convolutional neural network based magnetic resonance image scoring algorithm for differentiating between tuberculous and pyogenic spondylitis. Sci Rep 8:13124–13124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Galbusera F, Niemeyer F, Wilke H-J et al (2019) Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J 28:951–960

    Article  PubMed  Google Scholar 

  86. Jain D, Durand W, Burch S et al (2020) Machine learning for predictive modeling of 90-day readmission, major medical complication, and discharge to a facility in patients undergoing long segment posterior lumbar spine fusion. Spine 45:1151–1160

    Article  PubMed  Google Scholar 

  87. Khan O, Badhiwala JH, Akbar MA et al (2020) Prediction of worse functional status after surgery for degenerative cervical myelopathy: a machine learning approach. Neurosurgery 88:584–591. https://doi.org/10.1093/neuros/nyaa477

    Article  Google Scholar 

  88. Merali ZG, Witiw CD, Badhiwala JH et al (2019) Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy. PLOS ONE 14:e0215133–e0215133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liew BXW, Peolsson A, Rugamer D et al (2020) Clinical predictive modelling of post-surgical recovery in individuals with cervical radiculopathy: a machine learning approach. Sci Rep 10:16782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Joo YB, Baek I-W, Park Y-J et al (2020) Machine learning-based prediction of radiographic progression in patients with axial spondyloarthritis. Clin Rheumatol 39:983–991

    Article  PubMed  Google Scholar 

  91. Ogink PT, Karhade AV, Thio QCBS et al (2019) Development of a machine learning algorithm predicting discharge placement after surgery for spondylolisthesis. Eur Spine J 28:1775–1782

    Article  PubMed  Google Scholar 

  92. Roller BL, Boutin RD, O’Gara TJ et al (2021) Accurate prediction of lumbar microdecompression level with an automated MRI grading system. Skeletal Radiol 50:69–78

    Article  PubMed  Google Scholar 

  93. Harada GK, Siyaji ZK, Mallow GM et al (2021) Artificial intelligence predicts disk re-herniation following lumbar microdiscectomy: development of the “RAD” risk profile. Eur Spine J 30:2167–2175

    Article  PubMed  Google Scholar 

  94. Wong AYL, Harada G, Lee R et al (2020) Preoperative paraspinal neck muscle characteristics predict early onset adjacent segment degeneration in anterior cervical fusion patients: a machine-learning modeling analysis. J Orthop Res 39:1732–1744. https://doi.org/10.1002/jor.24829

    Article  PubMed  Google Scholar 

  95. Karhade AV, Ogink P, Thio Q et al (2018) Development of machine learning algorithms for prediction of discharge disposition after elective inpatient surgery for lumbar degenerative disc disorders. Neurosurg Focus 45:E6–E6

    Article  PubMed  Google Scholar 

  96. Arvind V, Kim JS, Oermann EK et al (2018) Predicting surgical complications in adult patients undergoing anterior cervical discectomy and fusion using machine learning. Neurospine 15:329–337

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kim JS, Merrill RK, Arvind V et al (2018) Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine (Phila Pa 1976) 43:853–60

    Article  Google Scholar 

  98. Esfandiari H, Newell R, Anglin C et al (2018) A deep learning framework for segmentation and pose estimation of pedicle screw implants based on C-arm fluoroscopy. Int J Comput Assist Radiol Surg 13:1269–1282

    Article  PubMed  Google Scholar 

  99. Khatri R, Varghese V, Sharma S et al (2019) Pullout strength predictor: a machine learning approach. Asian Spine J 13:842–848

    Article  PubMed  PubMed Central  Google Scholar 

  100. Varghese V, Krishnan V, Kumar GS (2018) Evaluating pedicle-screw instrumentation using decision-tree analysis based on pullout strength. Asian Spine J 12:611–621

    Article  PubMed  PubMed Central  Google Scholar 

  101. Goyal A, Ngufor C, Kerezoudis P et al (2019) Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J Neurosurg Spine 31:568–578

    Article  Google Scholar 

  102. Lerner J, Ruppenkamp J, Etter K et al (2020) Preoperative behavioral health, opioid, and antidepressant utilization and 2-year costs after spinal fusion-revelations from cluster analysis. Spine 45:E90–E98

    Article  PubMed  Google Scholar 

  103. Lee NJ, Sardar ZM, Boddapati V et al (2020) Can machine learning accurately predict postoperative compensation for the uninstrumented thoracic spine and pelvis after fusion from the lower thoracic spine to the sacrum? Glob Spine J 2020:2192568220956978–2192568220956978

    Google Scholar 

  104. Burström G, Buerger C, Hoppenbrouwers J et al (2019) Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine 31:147–154

    Article  PubMed  Google Scholar 

  105. Jamaludin A, Lootus M, Kadir T et al (2017) ISSLS Prize in Bioengineering Science 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J 26:1374–1383

    Article  PubMed  Google Scholar 

  106. Niemeyer F, Galbusera F, Kienle A, et al (2017) Deep learning improves the reliability of MRI-based disc degeneration grading

Download references

Acknowledgements

The authors wish to thank Zakariah Siyaji for his insights toward this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Samartzis.

Ethics declarations

Conflict of interest

The authors have no financial or competing interests in relation to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hornung, A.L., Hornung, C.M., Mallow, G.M. et al. Artificial intelligence in spine care: current applications and future utility. Eur Spine J 31, 2057–2081 (2022). https://doi.org/10.1007/s00586-022-07176-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07176-0

Keywords

Navigation