Skip to main content

Advertisement

Log in

Comparison of the accuracy between robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To perform a systematic review and meta-analysis to investigate the different of accuracy between robot-assisted and conventional freehand pedicle screw placement.

Methods

The electronic databases of PubMed, Ovid MEDLINE, EMBASE, and Web of Science were searched for the literatures published up to January, 2016. Statistical analysis was performed using the Review Manager 5.3. The dichotomous data for the pedicle violation rate were summarized using relative risk (RR) and 95 % confidence intervals (CIs). The level of significance was set at \(P<0.05\).

Results

A total of 257 patients and 1105 screws were included in the five studies for this meta-analysis. The results revealed that there was no difference in the accuracy between robot-assisted and conventional freehand pedicle screw placement at the 0 mm grading criteria (RR 1.08, 95 % CI 0.86, 1.35, \(I^{2}=28\,\%\), \(P=0.52\)) and at 2 mm grading criteria (RR 1.02, 95 % CI 0.68, 1.51, \({I}^{2}=28\,\%\), \(P=0.93\)). Among percutaneous robot-assisted technique, open robot-assisted technique and conventional freehand technique, there was also no significant difference at 0mm grading criteria (RO(P) vs FH : RR 1.10, 95 % CI 0.87, 1.40, \(I^{2}=34\,\%\), \(P=0.43\); RO(O) versus FH : RR 0.87, 95 % CI 0.55, 1.38, \(\mathrm{I}^{2}=9\,\%\), \(P=0.55\); RO(P) vs RO(O): RR 1.20, 95 % CI 0.65, 2.24, \(P=0.56\)) and at 2 mm grading criteria(RO(P) vs FH : RR 1.07, 95 % CI 0.43, 2.67, \( I^{2}=55\,\%\), \(P=0.88\); RO(O) vs FH : RR 0.71, 95 % CI 0.36, 1.39, \(I^{2}=0\,\%\), \(P=0.32\); RO(P) vs RO(O) : RR 0.84, 95 % CI 0.36, 1.94, \(P=0.68\)).

Conclusion

Further high-quality studies are required to unequivocally recommend one surgical technique over the other. With the more application of robot-assisted navigation system, accuracy and clinical benefit of the technique will be gradually improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yuan Q, Zhang G, Wu J, Xing Y, Sun Y, Tian W (2015) Clinical evaluation of the polymethylmethacrylate-augmented thoracic and lumbar pedicle screw fixation guided by the three-dimensional navigation for the osteoporosis patients. Eur Spine J 24(5):1043–1050. doi:10.1007/s00586-013-3131-8

    Article  PubMed  Google Scholar 

  2. Motiei-Langroudi R, Sadeghian H (2015) Assessment of pedicle screw placement accuracy in thoracolumbosacral spine using freehand technique aided by lateral fluoroscopy: results of postoperative computed tomography in 114 patients. Spine J 15(4):700–704. doi:10.1016/j.spinee.2014.12.012

    Article  PubMed  Google Scholar 

  3. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868. doi:10.1007/s00586-011-1729-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aoude AA, Fortin M, Figueiredo R, Jarzem P, Ouellet J, Weber MH (2015) Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J 24(5):990–1004. doi:10.1007/s00586-015-3853-x

    Article  PubMed  Google Scholar 

  5. Roser F, Tatagiba M, Maier G (2013) Spinal robotics: current applications and future perspectives. Neurosurgery 72(Suppl 1):12–18. doi:10.1227/NEU.0b013e318270d02c

  6. Ringel F, Stuer C, Reinke A, Preuss A, Behr M, Auer F, Stoffel M, Meyer B (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine 37(8):E496–501. doi:10.1097/BRS.0b013e31824b7767

    Article  PubMed  Google Scholar 

  7. Hu X, Lieberman IH (2014) What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Relat Res 472(6):1839–1844. doi:10.1007/s11999-013-3291-1

    Article  PubMed  Google Scholar 

  8. Hu X, Ohnmeiss DD, Lieberman IH (2013) Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J 22(3):661–666. doi:10.1007/s00586-012-2499-1

    Article  PubMed  Google Scholar 

  9. Lieberman IH, Hardenbrook MA, Wang JC, Guyer RD (2012) Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. J Spinal Disord Tech 25(5):241–248. doi:10.1097/BSD.0b013e318218a5ef

    Article  PubMed  Google Scholar 

  10. Lieberman IH, Togawa D, Kayanja MM, Reinhardt MK, Friedlander A, Knoller N, Benzel EC (2006) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I—technical development and a test case result. Neurosurgery 59(3):641–650; discussion 641–650. doi:10.1227/01.NEU.0000229055.00829.5B

  11. Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, Hardenbrook M, Kiriyanthan G, Barzilay Y, Bruskin A, Sackerer D, Alexandrovsky V, Stuer C, Burger R, Maeurer J, Donald GD, Schoenmayr R, Friedlander A, Knoller N, Schmieder K, Pechlivanis I, Kim IS, Meyer B, Shoham M (2010) Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine 35(24):2109–2115. doi:10.1097/BRS.0b013e3181d323ab

    Article  PubMed  Google Scholar 

  12. Barzilay Y, Kaplan L, Libergall M (2008) Robotic assisted spine surgery-a breakthrough or a surgical toy? Int J Med Robot Comput Assist Surg 4(3):195–196. doi:10.1002/rcs.216

    Article  CAS  Google Scholar 

  13. Pechlivanis I, Kiriyanthan G, Engelhardt M, Scholz M, Lucke S, Harders A, Schmieder K (2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine 34(4):392–398. doi:10.1097/BRS.0b013e318191ed32

    Article  PubMed  Google Scholar 

  14. Shoham M, Lieberman IH, Benzel EC, Togawa D, Zehavi E, Zilberstein B, Roffman M, Bruskin A, Fridlander A, Joskowicz L, Brink-Danan S, Knoller N (2007) Robotic assisted spinal surgery-from concept to clinical practice. Comput Aided Surg 12(2):105–115. doi:10.3109/10929080701243981

    CAS  PubMed  Google Scholar 

  15. Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y, Xu HZ (2011) Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20(6):846–859. doi:10.1007/s00586-010-1577-5

    Article  PubMed  Google Scholar 

  16. Kim HJ, Lee SH, Chang BS, Lee CK, Lim TO, Hoo LP, Yi JM, Yeom JS (2015) Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine 40(2):87–94. doi:10.1097/BRS.0000000000000680

    Article  PubMed  Google Scholar 

  17. Schatlo B, Molliqaj G, Cuvinciuc V, Kotowski M, Schaller K, Tessitore E (2014) Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine 20(6):636–643. doi:10.3171/2014.3.SPINE13714

    Article  PubMed  Google Scholar 

  18. Schizas C, Thein E, Kwiatkowski B, Kulik G (2012) Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg 78(2):240–245

    PubMed  Google Scholar 

  19. Togawa D, Kayanja MM, Reinhardt MK, Shoham M, Balter A, Friedlander A, Knoller N, Benzel EC, Lieberman IH (2007) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2—evaluation of system accuracy. Neurosurgery 60(2 Suppl 1):ONS129–139; discussion ONS139. doi:10.1227/01.NEU.0000249257.16912.AA

  20. Tang J, Zhu Z, Sui T, Kong D, Cao X (2014) Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies. J Biomed Res 28(3):228–239. doi:10.7555/JBR.28.20130159

    PubMed  PubMed Central  Google Scholar 

  21. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, Ploumis A, Xenakis TA (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21(2):247–255. doi:10.1007/s00586-011-2011-3

  22. Jin M, Liu Z, Liu X, Yan H, Han X, Qiu Y, Zhu Z (2015) Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique. Eur Spine J. doi:10.1007/s00586-015-4012-0

  23. Zamorano L, Li Q, Jain S, Kaur G (2004) Robotics in neurosurgery: state of the art and future technological challenges. Int J Med Robot Comput Assist Surg 1(1):7–22. doi:10.1002/rcs.2

    Article  CAS  Google Scholar 

  24. Stuer C, Ringel F, Stoffel M, Reinke A, Behr M, Meyer B (2011) Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl 109:241–245. doi:10.1007/978-3-211-99651-5_38

    Article  PubMed  Google Scholar 

  25. Schatlo B, Martinez R, Alaid A, von Eckardstein K, Akhavan-Sigari R, Hahn A, Stockhammer F, Rohde V (2015) Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochir 157(10):1819–1823. doi:10.1007/s00701-015-2535-0

    Article  PubMed  Google Scholar 

  26. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32(3):E111–E120. doi:10.1097/01.brs.0000254048.79024.8b

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Jiangsu Provincial Special Program of Medical Science(BL2012004), the National Natural Science Foundation of China (Grant No. 81401768), the Natural Science Foundation of Jiangsu Province (Grant No. BK20140289), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20123201120018), China Postdoctoral Science Foundation on the 53rd general program (Grant No. 2013M531404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors. This article does not contain patient data.

Additional information

Hao Liu and Weikai Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, W., Wang, Z. et al. Comparison of the accuracy between robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis. Int J CARS 11, 2273–2281 (2016). https://doi.org/10.1007/s11548-016-1448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1448-6

Keywords

Navigation