Skip to main content
Log in

Imaging Modalities to Assess Fracture Healing

  • Orthopedic Management of Fractures (M Kacena and L Gerstenfeld, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review discusses imaging modalities for fracture repair assessment, with an emphasis on pragmatic clinical and translational use, best practices for implementation, and challenges and opportunities for continuing research.

Recent Findings

Semiquantitative radiographic union scoring remains the clinical gold standard, but has questionable reliability as a surrogate indicator of structural bone healing, particularly in early-stage, complex, or compromised healing scenarios. Alternatively, computed tomography (CT) scanning enables quantitative assessment of callus morphometry and mechanics through the use of patient-specific finite-element models. Dual-energy X-ray absorptiometry (DXA) scanning and radiostereometric analysis (RSA) are also quantitative, but technically challenging. Nonionizing magnetic resonance (MR) and ultrasound imaging are of high interest, but require development to enable quantification of 3D mineralized structures.

Summary

Emerging image-based methods for quantitative assessment of bone healing may transform clinical research design by displacing binary outcomes classification (union/nonunion) and ultimately enhance clinical care by enabling early nonunion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Whelan DB, Bhandari M, Stephen D, Kreder H, Mckee MD, Zdero R, et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma. 2010;68:629–32.

    Article  PubMed  Google Scholar 

  2. Leow JM, Clement ND, Tawonsawatruk T, Simpson CJ, Simpson AHRW. The radiographic union scale in tibial (RUST) fractures: reliability of the outcome measure at an independent centre. Bone Joint Res. 2016;5:116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oliver WM, Smith TJ, Nicholson JA, Molyneux SG, White TO, Clement ND, et al. The Radiographic Union Score for HUmeral fractures (RUSHU) predicts humeral shaft nonunion. Bone Joint J. 2019;101-B:1300–6.

    Article  PubMed  Google Scholar 

  4. •• Christiano AV, Goch AM, Leucht P, Konda SR, Egol KA. Radiographic union score for tibia fractures predicts success with operative treatment of tibial nonunion. J Clin Orthop Trauma. 2019;10:650–65 Among aseptic tibial nonunions, post-reoperation RUST scores are predictive of time to clinical union.

    Article  PubMed  Google Scholar 

  5. Lack WD, Starman JS, Seymour R, Bosse M, Karunakar M, Sims S, et al. Any cortical bridging predicts healing of tibial shaft fractures. J Bone Joint Surg Am. 2014;96:1066–72.

    Article  PubMed  Google Scholar 

  6. •• Mitchell SL, Obremskey WT, Luly J, et al. Inter-rater reliability of the modified radiographic union score for diaphyseal tibial fractures with bone defects. J Orthop Trauma. 2019;33:301–7 Exemplary presentation of repeatability statistics in radiographic scoring.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Perlepe V, Omoumi P, Larbi A, Putineanu D, Dubuc JE, Schubert T, et al. Can we assess healing of surgically treated long bone fractures on radiograph? Diagn Interv Imaging. 2018;99:381–6.

    Article  CAS  PubMed  Google Scholar 

  8. Franzone JM, Finkelstein MS, Rogers KJ, Kruse RW. Evaluation of fracture and osteotomy union in the setting of osteogenesis imperfecta. J Pediatr Orthop. 2017;00:1.

    Google Scholar 

  9. Field JR, Ruthenbeck GR. Qualitative and quantitative radiological measures of fracture healing. Vet Comp Orthop Traumatol. 2018;31:1–9.

    PubMed  Google Scholar 

  10. Frank T, Osterhoff G, Sprague S, Garibaldi A, Bhandari M, Slobogean GP. The radiographic union score for hip (RUSH) identifies radiographic nonunion of femoral neck fractures. Clin Orthop Relat Res. 2016;474:1396–404.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sganga ML, Summers NJ, Barrett B, Matthews MR, Karthas T, Johnson L, et al. Radiographic union scoring scale for determining consolidation rates in the calcaneus. J Foot Ankle Surg. 2018;57:2–6.

    Article  PubMed  Google Scholar 

  12. Karthas TA, Cook JJ, Matthews MR, Sganga ML, Hansen DD, Collier B, et al. Development and validation of the foot union scoring evaluation tool for arthrodesis of foot structures. J Foot Ankle Surg. 2018;57:675–80.

    Article  PubMed  Google Scholar 

  13. •• Fiset S, Godbout C, Crookshank MC, Zdero R, Nauth A, Schemitsch EH. Experimental validation of the radiographic union score for tibial fractures (RUST) using micro-computed tomography scanning and biomechanical testing in an in-vivo rat model Sandra. J Bone Joint Surg. 2018;100:1871–8 Taken together, these two papers used rat osteotomy models to validate RUST scoring and showed that RUST may be less reliable in very early healing and in conditions where healing is biologically compromised.

    Article  PubMed  Google Scholar 

  14. •• Cooke ME, Hussein AI, Lybrand KE, et al. Correlation between RUST assessments of fracture healing to structural and biomechanical properties. J Orthop Res. 2018;36:945–53 Taken together, these two papers used rat osteotomy models to validate RUST scoring and showed that RUST may be less reliable in very early healing and in conditions where healing is biologically compromised.

    CAS  PubMed  Google Scholar 

  15. Litrenta J, Tornetta P, Ricci W, Sanders RW, O’Toole RV, Nascone JW, et al. In vivo correlation of radiographic scoring (radiographic union scale for tibia fractures) and biomechanical data in a sheep osteotomy model: can we define union radiographically? J Orthop Trauma. 2017;31:127–30.

    Article  PubMed  Google Scholar 

  16. Ross KA, O’Halloran K, Castillo RC, et al. Prediction of tibial nonunion at the 6-week time point. Injury. 2018;49:2075–82.

    Article  PubMed  Google Scholar 

  17. •• Dailey HL, Schwarzenberg P, Daly CJ, SAM B, Maher MM, Harty JA. Virtual Mechanical Testing Based on Low-Dose Computed Tomography Scans for Tibial Fracture: A Pilot Study of Prediction of Time to Union and Comparison with Subjective Outcomes Scoring. J Bone Joint Surg. 2019;101-A:1193–202 Virtual torsion testing of tibial fracture healing using patient-specific finite-element models out-performed radiographic scoring and patient-reported outcomes measures for predicting time to clinical union.

    Article  Google Scholar 

  18. Porter SM, Dailey HL, Hollar KA, Klein K, Harty JA, Lujan TJ. Automated measurement of fracture callus in radiographs using portable software. J Orthop Res. 2016. https://doi.org/10.1002/jor.23146.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lujan T OrthoRead - What is OrthoRead? http://coen.boisestate.edu/ntm/orthoread/. Accessed 23 Oct 2019.

  20. Perlepe V, Michoux N, Heynen G, Vande Berg B. Semi-quantitative CT assessment of fracture healing: how many and which CT reformats should be analyzed? Eur J Radiol. 2019;118:181–6.

    Article  PubMed  Google Scholar 

  21. Ohata T, Maruno H, Ichimura S. Changes over time in callus formation caused by intermittently administering PTH in rabbit distraction osteogenesis models. J Orthop Surg Res. 2015;10:4–11.

    Article  Google Scholar 

  22. Mandell JC, Weaver MJ, Harris MB, Khurana B. Hip fractures: a practical approach to diagnosis and treatment. Curr Radiol Rep. 2018;6:1–13.

    Article  Google Scholar 

  23. Misiura AK, Nanassy AD, Urbine J. Usefulness of pelvic radiographs in the initial trauma evaluation with concurrent CT: is additional radiation exposure necessary? Int J Pediatr. 2018;2018:1–4.

    Article  Google Scholar 

  24. Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H. The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg Am. 2006;88:692–7.

    PubMed  Google Scholar 

  25. Bottlang M, Tsai S, Bliven EK, Von Rechenberg B, Klein K, Augat P, et al. Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing. J Bone Joint Surg Am. 2016;98:466–74.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Richter H, Plecko M, Andermatt D, et al. Dynamization at the near cortex in locking plate. J Bone Joint Surg Am. 2015;97:208–15.

    Article  PubMed  Google Scholar 

  27. Plecko M, Lagerpusch N, Andermatt D, et al. The dynamisation of locking plate osteosynthesis by means of dynamic locking screws (DLS)—an experimental study in sheep. Injury. 2013;44:1346–57.

    Article  PubMed  Google Scholar 

  28. Plecko M, Lagerpusch N, Pegel B, Andermatt D, Frigg R, Koch R, et al. The influence of different osteosynthesis configurations with locking compression plates (LCP) on stability and fracture healing after an oblique 45° angle osteotomy. Injury. 2012;43:1041–51.

    Article  PubMed  Google Scholar 

  29. Bottlang M, Doornink J, Lujan TJ, Fitzpatrick DC, Marsh JL, Augat P, et al. Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg Am. 2010;92:12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schwarzenberg P, Maher MM, Harty JA, Dailey HL. Virtual structural analysis of tibial fracture healing from low-dose clinical CT scans. J Biomech. 2019;83:49–56.

    Article  PubMed  Google Scholar 

  31. Villa-Camacho JC, Iyoha-Bello O, Behrouzi S, Snyder BD, Nazarian A. Computed tomography-based rigidity analysis: a review of the approach in preclinical and clinical studies. Bonekey Rep. 2014;3:1–9.

    Article  Google Scholar 

  32. •• Petfield JL, Hayeck GT, Kopperdahl DL, Nesti LJ, Keaveny TM, Hsu JR. Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures. J Orthop Res. 2017;35:805–11 CT-based patient-specific finite-element models have high potential to predict post-hardware removal complications in limb salvage treatment.

    Article  PubMed  Google Scholar 

  33. Sollini M, Trenti N, Malagoli E, Catalano M, Di Mento L, Kirienko A, et al. [18F]FDG PET/CT in non-union: improving the diagnostic performances by using both PET and CT criteria. Eur J Nucl Med Mol Imaging. 2019;46:1605–15.

    Article  CAS  PubMed  Google Scholar 

  34. Wenter V, Albert NL, Brendel M, Fendler WP, Cyran CC, Bartenstein P, et al. [18F]FDG PET accurately differentiates infected and non-infected non-unions after fracture fixation. Eur J Nucl Med Mol Imaging. 2017;44:432–40.

    Article  PubMed  Google Scholar 

  35. Samelson EJ, Broe KE, Xu H, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 2019;7:34–43.

    Article  PubMed  Google Scholar 

  36. •• De Jong JJA, Christen P, Plett RM, Chapurlat R, Geusens PP, Van Den Bergh JPW, et al. Feasibility of rigid 3D image registration of high-resolution peripheral quantitative computed tomography images of healing distal radius fractures. PLoS One. 2017;12:1–12 HR-pQCT is an emerging high-resolution clinical imaging tool that may have significant utility for monitoring of fracture healing.

    Google Scholar 

  37. Anderson PA, Polly DW, Binkley NC, Pickhardt PJ. Clinical use of opportunistic computed tomography screening for osteoporosis. J Bone Joint Surg. 2018;100:2073–81.

    Article  PubMed  Google Scholar 

  38. Rezaei A, Giambini H, Rossman T, Carlson KD, Yaszemski MJ, Lu L, et al. Are DXA/aBMD and QCT/FEA stiffness and strength estimates sensitive to sex and age? Ann Biomed Eng. 2017;45:2847–56.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lewiecki EM, Binkley N, Bilezikian JP. Stop the war on DXA! Ann N Y Acad Sci. 2018;1433:12–7.

    Article  PubMed  Google Scholar 

  40. Chotel F, Braillon P, Sailhan F, Gadeyne S, Gellon J-O, Panczer G, et al. Bone stiffness in children: part II. Objectives criteria for children to assess healing during leg lengthening. J Pediatr Orthop. 2008;28:538–43.

    Article  PubMed  Google Scholar 

  41. Tselentakis G, Owen PJ, Richardson JB, Kuiper JH, Haddaway MJ, Dwyer JSM, et al. Fracture stiffness in callotasis determined by dual-energy X-ray absorptiometry scanning. J Pediatr Orthop B. 2001;10:248–54.

    CAS  PubMed  Google Scholar 

  42. Wagner F, Vach W, Augat P, Varady PA, Panzer S, Keiser S, et al. Daily subcutaneous Teriparatide injection increased bone mineral density of newly formed bone after tibia distraction osteogenesis, a randomized study. Injury. 2019;50:1478–82.

    Article  PubMed  Google Scholar 

  43. Aliuskevicius M, Østgaard SE, Rasmussen S. No influence of ibuprofen on bone healing after Colles’ fracture – a randomized controlled clinical trial. Injury. 2019;50:1309–17.

    Article  PubMed  Google Scholar 

  44. Leiblein M, Henrich D, Fervers F, Kontradowitz K, Marzi I, Seebach C. Do antiosteoporotic drugs improve bone regeneration in vivo? Eur J Trauma Emerg Surg. 2019:1–13. https://doi.org/10.1007/s00068-019-01144-y.

    Article  PubMed  Google Scholar 

  45. Pennypacker BL, Gilberto D, Gatto NT, Samadfam R, Smith SY, Kimmel DB, et al. Odanacatib increases mineralized callus during fracture healing in a rabbit ulnar osteotomy model. J Orthop Res. 2016;34:72–80.

    Article  CAS  PubMed  Google Scholar 

  46. Carey JJ, Delaney MF. Utility of DXA for monitoring, technical aspects of DXA BMD measurement and precision testing. Bone. 2017;104:44–53.

    Article  PubMed  Google Scholar 

  47. Elkins J, Marsh JL, Lujan T, Peindl R, Kellam J, Anderson DD, et al. Motion predicts clinical callus formation. J Bone Joint Surg Am. 2016;98:276–84.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baron K, Neumayer B, Amerstorfer E, Scheurer E, Diwoky C, Stollberger R, et al. Time-dependent changes in T1 during fracture healing in juvenile rats: a quantitative MR approach. PLoS One. 2016;11:1–14.

    Google Scholar 

  49. •• Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, et al. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging. 2017;46:323–37 MRI can be used to study musculoskeletal structures including trabecular bone, which may be important for detecting and monitoring some fractures.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Saha PK, Wehrli FW. A robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale. Pattern Recogn. 2004;37:1935–44.

    Article  Google Scholar 

  51. Jin Z, Guan Y, Yu G, Sun Y. Magnetic resonance imaging of postoperative fracture healing process without metal artifact: a preliminary report of a novel animal model. Biomed Res Int. 2016. https://doi.org/10.1155/2016/1429892.

    Google Scholar 

  52. Baron K, Neumayer B, Widek T, Schick F, Scheicher S, Hassler E, et al. Quantitative MR imaging in fracture dating-initial results. Forensic Sci Int. 2016;261:61–9.

    Article  PubMed  Google Scholar 

  53. Meyers AB. Physeal bridges: causes, diagnosis, characterization and post-treatment imaging. Pediatr Radiol. 2019;49:1595–609.

    Article  PubMed  Google Scholar 

  54. Rehman H, Clement RGE, Perks F, White TO. Imaging of occult hip fractures: CT or MRI? Injury. 2016;47:1297–301.

    Article  PubMed  Google Scholar 

  55. Sadozai Z, Davies R, Warner J. The sensitivity of ct scans in diagnosing occult femoral neck fractures. Injury. 2016;47:2769–71.

    Article  CAS  PubMed  Google Scholar 

  56. Haubro M, Stougaard C, Torfing T, Overgaard S. Sensitivity and specificity of CT- and MRI-scanning in evaluation of occult fracture of the proximal femur. Injury. 2015;46:1557–61.

    Article  CAS  PubMed  Google Scholar 

  57. de Zwart AD, Beeres FJP, Rhemrev SJ, Bartlema K, Schipper IB. Comparison of MRI, CT and bone scintigraphy for suspected scaphoid fractures. Eur J Trauma Emerg Surg. 2016;42:725–31.

    Article  PubMed  Google Scholar 

  58. Ross AB, Chan BY, Yi PH, Repplinger MD, Vanness DJ, Lee KS. Diagnostic accuracy of an abbreviated MRI protocol for detecting radiographically occult hip and pelvis fractures in the elderly. Skelet Radiol. 2019;48:103–8.

    Article  Google Scholar 

  59. Karl JW, Swart E, Strauch RJ. Diagnosis of occult scaphoid fractures a cost-effectiveness analysis. J Bone Joint Surg Am. 2014;97:1860–8.

    Article  Google Scholar 

  60. Hannemann PFW, Mommers EHH, Schots JPM, Brink PRG, Poeze M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2014;134:1093–106.

    Article  CAS  PubMed  Google Scholar 

  61. Schandelmaier S, Kaushal A, Lytvyn L, et al. Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. BMJ. 2017;356:j656.

    PubMed  PubMed Central  Google Scholar 

  62. Cunningham BP, Brazina S, Morshed S, Miclau T. Fracture healing: a review of clinical, imaging and laboratory diagnostic options. Injury. 2017;48:S69–75.

    Article  PubMed  Google Scholar 

  63. •• Nicholson JA, Tsang STJ, MacGillivray TJ, Perks F, Simpson AHRW. What is the role of ultrasound in fracture management? Bone Joint Res. 2019;8:304–12 Comprehensive review of ultrasound as a diagnostic and therapeutic tool in the context of bone fracture care.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nicholson JA, Oliver WM, LizHang J, MacGillivray T, Perks F, Robinson CM, et al. Sonographic bridging callus: an early predictor of fracture union. Injury. 2019. https://doi.org/10.1016/j.injury.2019.09.027.

    Article  CAS  PubMed  Google Scholar 

  65. Finnilä S, Moritz N, Strandberg N, Alm JJ, Aro HT. Radiostereometric analysis of the initial stability of internally fixed femoral neck fractures under differential loading. J Orthop Res. 2019;37:239–47.

    Article  PubMed  Google Scholar 

  66. Van Embden D, Stollenwerck GANL, Koster LA, Kaptein BL, Nelissen RGHH, Schipper IB. The stability of fixation of proximal femoral fractures: a radiostereometric analysis. Bone Joint J. 2015;97-B:391–7.

    Article  PubMed  Google Scholar 

  67. Bojan AJ, Jönsson A, Granhed H, Ekholm C, Kärrholm J. Trochanteric fracture-implant motion during healing – a radiostereometry (RSA) study. Injury. 2018;49:673–9.

    Article  PubMed  Google Scholar 

  68. Lind-Hansen TB, Lind MC, Nielsen PT, Laursen MB. Open-wedge high tibial osteotomy: RCT 2 years RSA follow-up. J Knee Surg. 2016;29:664–72.

    Article  PubMed  Google Scholar 

  69. Axelsson P, Strömqvist B. Can implant removal restore mobility after fracture of the thoracolumbar segment?: a radiostereometric study. Acta Orthop. 2016;87:511–5.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Muharemovic O, Troelsen A, Thomsen MG, Kallemose T, Gosvig KK. A pilot study to determine the effect of radiographer training on radiostereometric analysis imaging technique. Radiography. 2018;24:e37–43.

    Article  CAS  PubMed  Google Scholar 

  71. Broberg JS, Yuan X, Teeter MG. Radiostereometric analysis using clinical radiographic views: development of a universal calibration object. J Biomech. 2018;73:238–42.

    Article  PubMed  Google Scholar 

  72. Hansen L, De Raedt S, Jørgensen PB, Mygind-Klavsen B, Kaptein B, Stilling M. Marker free model-based radiostereometric analysis for evaluation of hip joint kinematics. Bone Joint Res. 2018;7:379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: current status and future directions. Am J Roentgenol. 2019;213:506–13.

    Article  Google Scholar 

  74. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah L. Dailey.

Ethics declarations

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Orthopedic Management of Fractures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarzenberg, P., Darwiche, S., Yoon, R.S. et al. Imaging Modalities to Assess Fracture Healing. Curr Osteoporos Rep 18, 169–179 (2020). https://doi.org/10.1007/s11914-020-00584-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00584-5

Keywords

Navigation