Skip to main content

Advertisement

Log in

Biologic adjuvants and bone: current use in orthopedic surgery

  • Biological Adjuvants in Orthopedic Surgery (J Dines and D Grande, Section Editors)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Normal bone healing is a complex process that eventually restores original structure and function to the site of trauma. However, clinical circumstances such as nonunion, critical-sized defects, systemic bone disease, and fusion procedures have stimulated a search for ways to enhance this normal healing process. Biologics are an important part of this search and many, including bone marrow aspirate concentrate, demineralized bone matrix, platelet-rich plasma, bone morphogenic proteins, and platelet-derived growth factor, are currently in clinical use. Many others, including mesenchymal stem cells, parathyroid hormone, and Nel-like molecule-1 (NELL-1) will likely be in use in the future depending on the results of preclinical and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–43.

    Article  CAS  PubMed  Google Scholar 

  2. Bennett MH, Stanford RE, Turner R. Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union. Cochrane Database Syst Rev. 2012;11, CD004712.

    PubMed  Google Scholar 

  3. Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7(10):1918–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gruskay JA, Webb ML, Grauer JN. Methods of evaluating lumbar and cervical fusion. Spine J. 2014;14(3):531–9.

    Article  PubMed  Google Scholar 

  5. Siddiqui NA, Owen JM. Clinical advances in bone regeneration. Curr Stem Cell Res Ther. 2013;8(3):192–200.

    Article  CAS  PubMed  Google Scholar 

  6. Morrow T, Felcone LH. Defining the difference: what makes biologics unique. Biotechnol Healthc. 2004;1(4):24–9.

    PubMed Central  PubMed  Google Scholar 

  7. Kalfas IH. Principles of bone healing. Neurosurg Focus. 2001;10(4):E1.

    Article  CAS  PubMed  Google Scholar 

  8. Schindeler A, Mcdonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol. 2008;19(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  9. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38 Suppl 4:S3–6.

    Article  Google Scholar 

  10. Hollinger JO, Hart CE, Hirsh SN, Lynch S, Friedlander GE. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am. 2008; Suppl 1:48–54.

  11. Caplan AL, Correa D. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop Res. 2011;29(12):1795–803.

    Article  CAS  PubMed  Google Scholar 

  12. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4):1283–316.

    CAS  PubMed  Google Scholar 

  13. DiGiovanni CW, Petricek JM. The evolution of rhPDGF-BB in musculoskeletal repair and its role in foot and ankle fusion surgery. Foot Ankle Clin N Am. 2010;15:621–40.

    Article  Google Scholar 

  14. Young CS, Ladd PA, Browning CF, et al. Release, biological potency, and biochemical integrity of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) combined with Augment(TM) Bone Graft or GEM 21S beta-tricalcium phosphate (beta-TCP). J Control Release. 2009;140(3):250–5.

    Article  CAS  PubMed  Google Scholar 

  15. Pierini M, Di Bella C, Dozza B, et al. The posterior iliac crest outperforms the anterior iliac crest when obtaining mesenchymal stem cells from bone marrow. J Bone Joint Surg Am. 2013;95(12):1101–7.

    Article  PubMed  Google Scholar 

  16. Bierman HR. Bone marrow aspiration the posterior iliac crest, an additional safe site. Calif Med. 1952;77(2):138–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  18. McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res. 2009;27:1033–42.

    Article  CAS  PubMed  Google Scholar 

  19. Fortier LA, Potter HG, Rickey EJ, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92(10):1927–37.

    Article  PubMed  Google Scholar 

  20. Murawski CD, Duke GL, Deyer TW, Kennedy JG. Bone marrow aspirate concentrate (BMAC) as a biological adjunct to osteochondral lesions of the talus. Tech Foot Ankle Surg. 2011;10(1):18–27.

    Article  Google Scholar 

  21. Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage. 2011;2:327–36.

    Article  Google Scholar 

  22. Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467(12):3307–20.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S. Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J Bone Joint Surg Am. 2010;92 Suppl 2:2–11.

    Article  PubMed  Google Scholar 

  24. Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005;87:1430–7.

    Article  PubMed  Google Scholar 

  25. WG D l, Einhorn TA, Koval K, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89(3):649–58.

    Article  Google Scholar 

  26. Payne KA, Didiano DM, Chu CR. Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthritis Cartilage. 2010;18(5):705–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Damron TA, Lisle J, Craig T, Wade M, Silbert W, Cohen H. Ultraporous β-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions: comparison in a prospective randomized clinical trial. J Bone Joint Surg Am. 2013;95(2):158–66.

    Article  PubMed  Google Scholar 

  28. Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am. 1997;79(11):1699–709.

    CAS  PubMed  Google Scholar 

  29. DeLong JM, Russell RP, Mazzocca AD. Platelet-rich plasma: the PAW classification system. Arthroscopy. 2012;28(7):998–1009.

    Article  PubMed  Google Scholar 

  30. Hall MP, Band PA, Meislin RJ, Jazrawi LM, Cardone DA. Platelet-rich plasma: current concepts and application in sports medicine. J Am Acad Orthop Surg. 2009;17(10):602–8.

    PubMed  Google Scholar 

  31. Castillo TN, Pouliot MA, Kim HJ, Dragoo JL. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39(2):266–71.

    Article  PubMed  Google Scholar 

  32. Mazzucco L, Balbo V, Cattana E, Guaschino R, Borzini P. Not every PRPgel is born equal: evaluation of growth factor availability for tissues through four PRP-gel preparations. Fibrinet, RegenPRP-Kit, Plateltex and one manual procedure. Vox Sang. 2009;97(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  33. Mazzocca AD, Mccarthy MB, Chowaniec DM, et al. Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am. 2012;94(4):308–16.

    Article  PubMed  Google Scholar 

  34. Carreon LY, Glassman SD, Anekstein Y, Puno RM. Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine (Phila Pa 1976). 2005;30(9):E243–6. discussion E247.

    Article  Google Scholar 

  35. Dallari D, Savarino L, Stagni C, et al. Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am. 2007;89(11):2413–20.

    Article  CAS  PubMed  Google Scholar 

  36. Nakamura N. Platelet-rich plasma added to the patellar tendon harvest site during anterior cruciate ligament reconstruction enhanced healing. J Bone Joint Surg Am. 2013;95(10):942.

    Article  PubMed  Google Scholar 

  37. Mall NA, Tanaka MJ, Choi LS, Paletta GA. Factors affecting rotator cuff healing. J Bone Joint Surg Am. 2014;96(9):778–88.

    Article  PubMed  Google Scholar 

  38. American Academy of Orthopaedic Surgeons: treatment of osteoarthritis of the knee: evidence-based guideline, 2nd Edition. Available at: http://www.aaos.org/research/guidelines/TreatmentofOsteoarthritisoftheKneeGuideline.pdf. Accessed 15 Dec 2014.

  39. Hsu WK, Mishra A, Rodeo SR, et al. Platelet-rich plasma in orthopaedic applications: evidence-based recommendations for treatment. J Am Acad Orthop Surg. 2013;21(12):739–48.

    Article  PubMed  Google Scholar 

  40. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR. Osteoinductivity of commercially available demineralized bone matrix: preparations in a spine fusion model. J Bone Joint Surg Am. 2004;86(10):2243–50.

    PubMed  Google Scholar 

  41. Michelson JD, Curl LA. Use of demineralized bone matrix in hindfoot arthrodesis. Clin Orthop Relat Res. 1996;325:203–8.

    Article  PubMed  Google Scholar 

  42. Muschler GF, Matsukura Y, Nitto H, et al. Selective retention of bone marrowderived cells to enhance spinal fusion. Clin Orthop Relat Res. 2005;432:242–51.

    Article  PubMed  Google Scholar 

  43. Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL. Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am. 2006;88(7):1442–7.

    Article  PubMed  Google Scholar 

  44. Taylor NL, Crow SA, Heyworth BE, Rosenwasser MP. Treatment of humeral nonunions with allograft, demineralized bone matrix, and plate fixation. Osteosynthesis Trauma Care. 2005;13(2):105–12.

    Article  Google Scholar 

  45. Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB. Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg Am. 2010;92(2):427–35.

    Article  PubMed  Google Scholar 

  46. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002;15(5):337–49.

    Article  PubMed  Google Scholar 

  47. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976). 2002;27(21):2396–408.

    Article  Google Scholar 

  48. Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: A prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84:2123–34.

    Article  PubMed  Google Scholar 

  49. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: Emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91.

    Article  PubMed  Google Scholar 

  50. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res. 1998;346:26–37.

    Article  PubMed  Google Scholar 

  51. Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc. 2009;84(10):893–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Jones E, Yang X. Mesenchymal stem cells and bone regeneration: current status. Injury. 2011;42(6):562–8.

    Article  PubMed  Google Scholar 

  53. Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005;2(8).

  54. Udehiya RK, Amarpal, Aithal HP, et al. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Res Vet Sci. 2013;94(3):743–52.

    Article  CAS  PubMed  Google Scholar 

  55. Charron D, Suberbielle-boissel C, Tamouza R, Al-daccak R. Anti-HLA antibodies in regenerative medicine stem cell therapy. Hum Immunol. 2012;73(12):1287–94.

    Article  CAS  PubMed  Google Scholar 

  56. Tella SH, Gallagher JC. Biological agents in management of osteoporosis. Eur J Clin Pharmacol. 2014;70(11):1291–301.

    Article  CAS  PubMed  Google Scholar 

  57. Kaback LA, Soung do Y, Naik A, et al. Teriparatide (1–34 human PTH) regulation of osterix during fracture repair. J Cell Biochem. 2008;105(1):219–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mancilla EE, Brodsky JL, Mehta S, Pignolo RJ, Levine MA. Teriparatide as a systemic treatment for lower extremity non-union fractures: a case series. Endocr Pract. 2014;1–22.

  59. Ting K, Vastardis H, Mulliken JB, et al. Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res. 1999;14(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, Kuroda S, Carpenter D, et al. Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest. 2002;110(6):861–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Zhang X, Cowan CM, Jiang X, et al. Nell-1 induces acrania-like cranioskeletal deformities during mouse embryonic development. Lab Invest. 2006;86(7):633–44.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, Ting K, Bessette CM, et al. Nell-1, a key functional mediator of Runx2, partially rescues calvarial defects in Runx2(+/−) mice. J Bone Miner Res. 2011;26(4):777–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Zhang X, Ting K, Pathmanathan D, et al. Calvarial cleidocraniodysplasia-like defects with ENU-induced Nell-1 deficiency. J Craniofac Surg. 2012;23(1):61–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Cowan CM, Cheng S, Ting K, et al. Nell-1 induced bone formation within the distracted intermaxillary suture. Bone. 2006;38(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  65. Aghaloo T, Cowan CM, Chou YF, et al. Nell-1-induced bone regeneration in calvarial defects. Am J Pathol. 2006;169(3):903–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lu SS, Zhang X, Soo C, et al. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 2007;7(1):50–60.

    Article  PubMed  Google Scholar 

  67. Li W, Zara JN, Siu RK, et al. Nell-1 enhances bone regeneration in a rat critical-sized femoral segmental defect model. Plast Reconstr Surg. 2011;127(2):580–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Siu RK, Lu SS, Li W, et al. Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Eng Part A. 2011;17(7–8):1123–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bokui N, Otani T, Igarashi K, et al. Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation. FEBS Lett. 2008;582(2):365–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Truong T, Zhang X, Pathmanathan D, Soo C, Ting K. Craniosynostosis-associated gene nell-1 is regulated by runx2. J Bone Miner Res. 2007;22(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  71. Aghaloo T, Cowan CM, Zhang X, et al. The effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration. J Oral Maxillofac Surg. 2010;68(2):300–8.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Zhu S, Song D, Jiang X, Zhou H, Hu J. Combined effects of recombinant human BMP-2 and Nell-1 on bone regeneration in rapid distraction osteogenesis of rabbit tibia. Injury. 2011;42(12):1467–73.

    Article  PubMed  Google Scholar 

  73. Xia L, Xu Y, Chang Q, et al. Maxillary sinus floor elevation using BMP-2 and Nell-1 gene-modified bone marrow stromal cells and TCP in rabbits. Calcif Tissue Int. 2011;89(1):53–64.

    Article  CAS  PubMed  Google Scholar 

  74. James AW, Pang S, Askarinam A, et al. Additive effects of sonic hedgehog and Nell-1 signaling in osteogenic versus adipogenic differentiation of human adipose-derived stromal cells. Stem Cells Dev. 2012;21(12):2170–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res. 2009;20 Suppl 4:185–206.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Benjamin Smith, Todd Goldstein, and Charles Ekstein declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Smith.

Additional information

This article is part of the Topical Collection on Biological Adjuvants in Orthopedic Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, B., Goldstein, T. & Ekstein, C. Biologic adjuvants and bone: current use in orthopedic surgery. Curr Rev Musculoskelet Med 8, 193–199 (2015). https://doi.org/10.1007/s12178-015-9265-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-015-9265-z

Keywords

Navigation