Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prospective identification of myogenic endothelial cells in human skeletal muscle

Abstract

We document anatomic, molecular and developmental relationships between endothelial and myogenic cells within human skeletal muscle. Cells coexpressing myogenic and endothelial cell markers (CD56, CD34, CD144) were identified by immunohistochemistry and flow cytometry. These myoendothelial cells regenerate myofibers in the injured skeletal muscle of severe combined immunodeficiency mice more effectively than CD56+ myogenic progenitors. They proliferate long term, retain a normal karyotype, are not tumorigenic and survive better under oxidative stress than CD56+ myogenic cells. Clonally derived myoendothelial cells differentiate into myogenic, osteogenic and chondrogenic cells in culture. Myoendothelial cells are amenable to biotechnological handling, including purification by flow cytometry and long-term expansion in vitro, and may have potential for the treatment of human muscle disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colocalization of myogenic and endothelial cell antigens in adult human muscle.
Figure 2: Flow cytometry analysis and sorting of human muscle cell subsets.
Figure 3: Culture of whole dissociated human muscle and sorted CD56+ myogenic cells in endothelial cell growth conditions and CD56+ myogenic cells cultured in EGM2 medium for 3 weeks are able to incorporate Ac-LDL.
Figure 4: In vivo myogenic potential of endothelium-related cells freshly sorted from human skeletal muscle.
Figure 5: In vivo myogenic potential of long-term cultured human myogenic, endothelial and myoendothelial cells.
Figure 6: Proliferation in culture and viability under oxidative conditions of human muscle-derived myogenic, endothelial, and myoendothelial cells.
Figure 7: Multipotency of myoendothelial clonal colonies.

Similar content being viewed by others

References

  1. Bischoff, R. Proliferation of muscle satellite cells on intact myofibers in culture. Dev. Biol. 115, 129–139 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Bischoff, R. The satellite cell and muscle regeneration. In Myology: Basic and Clinical (Engel, A., Franzini-Armstrong, C. & Fischman D.A., eds.), 97–118, (McGraw-Hill, New York, 1994).

    Google Scholar 

  3. Skuk, D. & Tremblay, J.P. Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. J. Muscle Res. Cell Motil. 24, 285–300 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Partridge, T.A. Invited review: myoblast transfer: a possible therapy for inherited myopathies? Muscle Nerve 14, 197–212 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Menasche, P. et al. Myoblast transplantation for heart failure. Lancet 357, 279–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Cao, B., Deasy, B.M., Pollett, J. & Huard, J. Cell therapy for muscle regeneration and repair. Phys. Med. Rehabil. Clin. N. Am. 16, 889–907, viii (2005).

    Article  PubMed  Google Scholar 

  7. Menasche, P. Cellular transplantation: hurdles remaining before widespread clinical use. Curr. Opin. Cardiol. 19, 154–161 (2004).

    Article  PubMed  Google Scholar 

  8. Miller, J.B., Schaefer, L. & Dominov, J.A. Seeking muscle stem cells. Curr. Top. Dev. Biol. 43, 191–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Qu-Petersen, Z. et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J. Cell Biol. 157, 851–864 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  PubMed  Google Scholar 

  11. Partridge, T.A. Stem cell therapies for neuromuscular diseases. Acta Neurol. Belg. 104, 141–147 (2004).

    PubMed  Google Scholar 

  12. Peault, B. et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15, 867–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Oshima, H. et al. Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol. Ther. 12, 1130–1141 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Payne, T.R. et al. Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther. 12, 1264–1274 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Deasy, B.M. et al. Long-term self-renewal of postnatal muscle-derived stem cells. Mol. Biol. Cell 16, 3323–3333 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deasy, B.M. et al. A role for cell sex in stem cell-mediated skeletal muscle regeneration: female cells have higher muscle regeneration efficiency. J. Cell Biol. 177, 73–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mueller, G.M., O'Day, T., Watchko, J.F. & Ontell, M. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice. Hum. Gene Ther. 13, 1081–1090 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Jankowski, R.J., Deasy, B.M., Cao, B., Gates, C. & Huard, J. The role of CD34 expression and cellular fusion in the regeneration capacity of myogenic progenitor cells. J. Cell Sci. 115, 4361–4374 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Jankowski, R.J. & Huard, J. Myogenic cellular transplantation and regeneration: sorting through progenitor heterogeneity. Panminerva Med. 46, 81–91 (2004).

    CAS  PubMed  Google Scholar 

  20. Cao, B. et al. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat. Cell Biol. 5, 640–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Wright, V. et al. BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol. Ther. 6, 169–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kuroda, R. et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum. 54, 433–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Winitsky, S.O. et al. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol. 3, e87 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sarig, R., Baruchi, Z., Fuchs, O., Nudel, U. & Yaffe, D. Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres. Stem Cells 24, 1769–1778 (2006).

    Article  PubMed  Google Scholar 

  25. Nomura, T. et al. Skeletal myosphere-derived progenitor cell transplantation promotes neovascularization in delta-sarcoglycan knockdown cardiomyopathy. Biochem. Biophys. Res. Commun. 352, 668–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Beresford, J.N., Bennett, J.H., Devlin, C., Leboy, P.S. & Owen, M.E. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 102, 341–351 (1992).

    CAS  PubMed  Google Scholar 

  27. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J. & Kessler, P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

    Article  PubMed  Google Scholar 

  29. Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Petersen, B.E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Theise, N.D. et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Mezey, E., Chandross, K.J., Harta, G., Maki, R.A. & McKercher, S.R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, Y. et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Seaberg, R.M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. 22, 1115–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Toma, J.G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, H.S. et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22, 1330–1337 (2004).

    Article  PubMed  Google Scholar 

  38. Mitchell, K.E. et al. Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 21, 50–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Shih, D.T. et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 23, 1012–1020 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Zuk, P.A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Barry, F.P. & Murphy, J.M. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 36, 568–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    CAS  PubMed  Google Scholar 

  44. Jaffredo, T., Gautier, R., Eichmann, A. & Dieterlen-Lievre, F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125, 4575–4583 (1998).

    CAS  PubMed  Google Scholar 

  45. Nishikawa, S.I. et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8, 761–769 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. North, T.E. et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16, 661–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Oberlin, E., Tavian, M., Blazsek, I. & Peault, B. Blood-forming potential of vascular endothelium in the human embryo. Development 129, 4147–4157 (2002).

    CAS  PubMed  Google Scholar 

  48. Kardon, G., Campbell, J.K. & Tabin, C.J. Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev. Cell 3, 533–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Tamaki, T. et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J. Cell Biol. 157, 571–577 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Minasi, M.G. et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129, 2773–2783 (2002).

    CAS  PubMed  Google Scholar 

  51. Cossu, G. & Bianco, P. Mesoangioblasts–vascular progenitors for extravascular mesodermal tissues. Curr. Opin. Genet. Dev. 13, 537–542 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Christov, C. et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 18, 1397–1409 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Angelis, L. et al. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J. Cell Biol. 147, 869–878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sampaolesi, M. et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301, 487–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Galli, D. et al. Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells. Arterioscler. Thromb. Vasc. Biol. 25, 692–697 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Sampaolesi, M. et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444, 574–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Zheng, B., Cao, B., Li, G. & Huard, J. Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng. 12, 1891–1901 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants to J.H. from the Muscular Dystrophy Association (USA), the US National Institutes of Health (R01-AR049684; RO1-DE13420-06; IU54AR050733-01), the William F. and Jean W. Donaldson Chair, the Orris C. Hirtzel and Beatrice Dewey Hirtzel Memorial Foundation at Children's Hospital of Pittsburgh, the Henry J. Mankin Endowed Chair at the University of Pittsburgh and the Lemieux Foundation at the University of Pittsburgh. The authors wish to thank S.C. Watkins for his assistance with confocal microscopy, A. Usas and J.A. Jadlowiec for help with tumorigenesis experiments in vivo, J. Tebbets and M. Branca for technical help with cryostat sectioning, and David Humiston for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Huard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5; Supplementary Figures 1,2 (PDF 270 kb)

Supplementary Video 1

Video of Figure 1f. Nuclei were stained blue with Dapi (× 1000). (AVI 39938 kb)

Supplementary Video 2

Video of Figure 1g. CD56 (red) and UEA-1 (green) co-staining. Nuclei were stained blue with Dapi (× 1000). (AVI 89091 kb)

Supplementary Video 3

Video of Figure 1h. CD56 (red) and VE-cad (green) co-staining. Nuclei were stained blue with Dapi (× 1000). (AVI 89091 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, B., Cao, B., Crisan, M. et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25, 1025–1034 (2007). https://doi.org/10.1038/nbt1334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing