Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method

Spine (Phila Pa 1976). 2004 Jun 1;29(11):E212-6. doi: 10.1097/00007632-200406010-00020.

Abstract

Study design: Axial pullout tests using fresh cadaveric thoracolumbar vertebral bodies.

Objectives: To evaluate the effect of a new injectable calcium phosphate cement on the axial pullout strength of both revised and augmented pedicle screws in comparison with polymethyl methacrylate and in terms of injection method.

Summary of background data: Failure of pedicle screws by loosening and back out remains a significant clinical problem and is of particular concern for patients with low bone quality. Polymethyl methacrylate was shown to significantly improve the screw pullout strength. However, polymethyl methacrylate is known to have a high polymerization temperature, which may damage surrounding tissues, and a short handling time, and it lacks long-term biocompatibility. Bone mineral cements such as calcium phosphate have a longer working time, very low thermal effect, and are biodegradable as well as having good mechanical strength. Recently, new calcium phosphate cement with improved infiltration properties for better injectability has been introduced, but its performance in augmenting the pedicle screw fixation has not been tested yet.

Methods: The bone mineral densities of 52 vertebral bodies (T11-L5) were measured using dual-energy x-ray absorptiometry. In each vertebral body, a 6.5-mm-diameter and 45 +/- 5-mm-long pedicle screw was inserted into either the right or left pedicle, representing an initial intact implantation. These intact screws were pulled axially until failure at 10 mm/min. Following failure of the intact pedicle, 3.0 cc of cement was injected into the failed screw hole, representing a revision case, and the prepared screw hole in the contralateral intact pedicle representing an augmentation case. The cement was injected either to the distal tip of the screw hole (calcium phosphate-1 group, n = 19) or along the entire length of the screw hole (calcium phosphate-2 group, n = 20), and the screws were inserted. The cement was then allowed to cure for 24 hours at room temperature before both screws were pulled to failure. In 13 specimens, polymethyl methacrylate was injected along the entire length of the screw hole (polymethyl methacrylate group). Kruskal-Wallis and Mann-Whitney tests were used to compare the screw pullout strengths for study groups, whereas linear relationships between variables were assessed with scatter plots and Spearman correlation coefficients with a significance level of 0.05.

Results: Mean bone mineral densities of all groups were similar. A significant positive correlation was seen between bone mineral density and intact pullout strength. In revision, the pullout strength of calcium phosphate-1 was similar to that of intact, whereas the pullout strength of calcium phosphate-2 and polymethyl methacrylate was significantly greater than that of intact. In augmentation, all 3 injection methods significantly improved the pullout strength over intact. Injection of the calcium phosphate cement along the entire screw length was found to produce significantly higher pullout strengths than injection only at the distal tip of the screw in revision case. Injection of polymethyl methacrylate produced significantly higher pullout strengths than the injection of calcium phosphate by either method in both revision and augmentation.

Conclusion: Results of this study demonstrate that the new calcium phosphate cement can improve the axial pullout strength of revised and augmented pedicle screws when injected along the entire length of the screw. This suggests that the injection method may be crucial for revision of failed pedicle screws. Considering inherent properties more favorable for in vivo application, such as nonexothermal polymerization and longer working time, and significant improvement in pullout strength, the new calcium phosphate cement may be a good alternative to polymethyl methacrylate for the augmentation of pedicle screw fixation.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Biomechanical Phenomena
  • Bone Cements*
  • Bone Density
  • Bone Screws*
  • Calcium Phosphates / administration & dosage*
  • Fracture Fixation, Internal / methods*
  • Humans
  • Injections
  • Middle Aged
  • Polymethyl Methacrylate / administration & dosage
  • Radiography
  • Spine / diagnostic imaging
  • Spine / surgery*
  • Time Factors

Substances

  • Bone Cements
  • Calcium Phosphates
  • Polymethyl Methacrylate
  • calcium phosphate