Clinical outcomes of degenerative lumbar spinal stenosis treated with lumbar decompression and the Cosmic "semi-rigid" posterior system

Tuncay Kaner, Mehdi Sasani, Tunc Oktenoglu, Ahmet Levent Aydin and Ali Fahir Ozer

doi: https://doi.org/10.1016/j.esas.2010.09.003

This information is current as of February 20, 2021.

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://ijssurgery.com/alerts
Dynamic stabilization

Clinical outcomes of degenerative lumbar spinal stenosis treated with lumbar decompression and the Cosmic “semi-rigid” posterior system

Tuncay Kaner, MD a,*, Mehdi Sasani, MD b, Tunc Oktenoglu, MD b, Ahmet Levent Aydin, MD c, Ali Fahir Ozer, MD b

a Neurosurgery Department, Pendik State Hospital, Istanbul, Turkey
b Neurosurgery Department, American Hospital, Istanbul, Turkey
c Neurosurgery Department, Istanbul Physical Therapy and Rehabilitation Training Hospital, Istanbul, Turkey

Abstract

Background: Although some investigators believe that the rate of postoperative instability is low after lumbar spinal stenosis surgery, the majority believe that postoperative instability usually develops. Decompression alone and decompression with fusion have been widely used for years in the surgical treatment of lumbar spinal stenosis. Nevertheless, in recent years several biomechanical studies have shown that posterior dynamic transpedicular stabilization provides stabilization that is like the rigid stabilization systems of the spine. Recently, posterior transpedicular dynamic stabilization has been more commonly used as an alternative treatment option (rather than rigid stabilization with fusion) for the treatment of degenerative spines with chronic instability and for the prevention of possible instability after decompression in lumbar spinal stenosis surgery.

Methods: A total of 30 patients with degenerative lumbar spinal stenosis (19 women and 11 men) were included in the study group. The mean age was 67.3 years (range, 40–85 years). Along with lumbar decompression, a posterior dynamic transpedicular stabilization (dynamic transpedicular screw–rigid rod system) without fusion was performed in all patients. Clinical and radiologic results for patients were evaluated during follow-up visits at 3, 12, and 24 months postoperatively.

Results: The mean follow-up period was 42.93 months (range, 24–66 months). A clinical evaluation of patients showed that, compared with preoperative assessments, statistically significant improvements were observed in the Oswestry and visual analog scale scores in the last follow-up control. Compared with preoperative values, there were no statistically significant differences in radiologic evaluations, such as segmental lordosis angle (α) scores (P = .125) and intervertebral distance scores (P = .249). There were statistically significant differences between follow-up lumbar lordosis scores (P = .048). There were minor complications, including a subcutaneous wound infection in 2 cases, a dural tear in 2 cases, cerebrospinal fluid fistulas in 1 case, a urinary tract infection in 1 case, and urinary retention in 1 case. We observed L5 screw loosening in 1 of the 3-level decompression cases. No screw breakage was observed and no revision surgery was performed in any of these cases.

Conclusions: Posterior dynamic stabilization without fusion applied to lumbar decompression leads to better clinical and radiologic results in degenerative lumbar spinal stenosis. To avoid postoperative instability, especially in elderly patients who undergo degenerative lumbar spinal stenosis surgery with chronic instability, the application of decompression with posterior dynamic transpedicular stabilization is likely an important alternative surgical option to fusion, because it does not have fusion-related side effects, is easier to perform than fusion, requires a shorter operation time, and has low morbidity and complication rates.

© 2010 SAS - The International Society for the Advancement of Spine Surgery. Published by Elsevier Inc. All rights reserved.

Keywords: Lumbar spinal stenosis; Posterior dynamic stabilization; Microlumbar decompression; Spinal fusion; Spinal instability

Degenerative lumbar spinal stenosis is the most important cause of lower-back pain and neurologic dysfunction in the elderly.1–6 With nonoperative treatments, 30% of patients with spinal stenosis show improvement whereas 60% remain unchanged. Surgical results have been more successful than medical treatments.7 The expansion of the canal with laminectomy in lumbar stenosis was defined by Sarpyener for the first time.8 In later years, particularly in elderly individuals, in whom disease is commonly observed, multiple-level decompressive lumbar surgeries have been widely used to treat spinal stenosis because of advanced degenerative disease. However, excellent results have not been observed.1,9–12 Rates of good and satisfactory results
ranged between 57% and 96%. The frequency of lower-back pain and sciatica after lumbar spinal stenosis surgery is not low. It is believed that such complaints after decompressive surgery are due to post-decompression instability.

Many researchers have reported the importance of posterior elements in axial loading, translation and shear, and rotational resistance. Thus, removing the posterior elements leads to postoperative back pain and the compression of neural elements by causing instability. To prevent postoperative instability, fusion is added to the decompression process in degenerative lumbar spinal stenosis cases, and this is believed to be superior to decompression alone. It is known that instrumentation applied in conjunction with fusion increases the rate of fusion. Although fusion has been used in the treatment of degenerative spinal stenosis for years, especially in elderly patients who have high comorbidity, the complication rate is high because of long operation times. Fusion carries the risk of adjacent segment degeneration, donor-site morbidity, and pseudarthrosis, especially in the elderly. Even a successful fusion disrupts the normal sagittal balance and, after fusion, frequently causes back pain in patients while sitting. Only 30% of reported clinical results of circumferential fusion are excellent. In addition, clinical studies have shown that there is no relationship between successful fusion and clinical results.

Recently, posterior dynamic systems have been used in the treatment of degenerative diseases of the spine to reduce the side effects from fusion. The concept of dynamic stabilization is based on the principles of reducing the side effects on adjacent segments formed by fusion and control of movement by providing load transfer of spinal segments without fusion. Because there are few studies in the literature on the use of posterior dynamic transpedicular stabilization to prevent possible spinal instability after degenerative lumbar spinal stenosis surgery, more studies are needed to refine this concept.

The objective of this study is to discuss our clinical and radiologic results after performing lumbar decompression accompanied by posterior dynamic transpedicular stabilization (dynamic pedicular screw–rod) without fusion. Although it is a new concept, it has been used as an alternative treatment option to fusion for treating degenerative lumbar spinal stenosis cases.

Materials and methods

This prospective study included 30 patients who had degenerative lumbar spinal stenosis from 2004–2008. There were 19 female and 11 male patients, with a mean age of 67.3 years (range, 40–85 years). The inclusion criteria were the presentation of degenerative lumbar spinal stenosis symptoms for at least 1 year and a lack of response to nonoperative treatments. All cases had only degenerative lumbar spinal stenosis, having both central and lateral narrowing. Exclusion criteria included prior spinal surgery and fusion, congenital anomalies, severe systemic disease, degenerative spondylolisthesis, degenerative scoliosis, and active infection. All patients had leg pain or lower-back or hip pain due to a narrow spinal canal. All patients were diagnosed with preoperative lumbar magnetic resonance imaging (MRI); anterior-posterior, lateral, and standing lateral hyperflexion and hyperextension functional radiographs; and computed tomography. The main findings of MRI included secondary degenerative changes in spinal segments.

Clinical results were evaluated by use of lower-back and leg visual analog scale (VAS) and Oswestry scores. The segmental lordosis angle (α), lumbar lordosis (LL) angle, and intervertebral distance (intervertebral space ratio [IVS]) were used in the assessment of the patients’ radiologic results. The segmental angle was measured according Cobb (Fig. 1). Implant failures such as screw breakage or loosening were recorded. Postoperative clinical and radiologic results were evaluated and recorded at 3, 12, and 24 months.

We used Cosmic dynamic hinged screws (Ulrich GmbH & Co. KG, Ulm, Germany) with microlumbar decompression in all cases. In the sagittal plane, the motion of the dynamic pedicular screw is between the shaft and head of the screw. The hinge does not permit any motion in horizontal rotation and translation. The dynamic transpedicular screws were used in conjunction with rigid rods (Fig. 2).
lumbar paravertebral muscles under fluoroscopic control. The result of application of all dynamic screws through hinged dynamic pedicular screws and faster operative time of surgical procedures, we found that easier utilization of their daily activities without any restrictions. During all rest period of 30 days, the patients were allowed to return to day without any lumbar orthosis. After a brief postoperative screws. Patients were mobilized postoperatively the first applied. Rigid rods were used in conjunction with dynamic spinal canal was used in 10 patients. The other opening the lateral recess, the nerve root was relieved. The patients received a laminotomy and medial facetectomy up to the pedicles with a high-speed drill from the right or left side, where the clinical radiculopathy was intense. Thus, by opening the lateral recess, the nerve root was relieved. The spinal canal was then enlarged by undercutting the thickened ligamentum flavum on both the right and left sides, and the microlumbar decompression process was completed. When it was necessary, a foraminotomy was performed while the isthmus was being protected. Then, under fluoroscopic control, hinged dynamic transpedicular screws were applied. Rigid rods were used in conjunction with dynamic screws. Patients were mobilized postoperatively the first day without any lumbar orthosis. After a brief postoperative rest period of 30 days, the patients were allowed to return to their daily activities without any restrictions. During all surgical procedures, we found that easier utilization of hinged dynamic pedicular screws and faster operative time resulted from application of all dynamic screws through lumbar paravertebral muscles under fluoroscopic control.

Operative technique

All surgeries were carried out by the same 4 surgeons. All patients were operated on in the prone position and under general anesthesia. Patients were given preoperative prophylactic antibiotics. All operations were performed with the operation microscope and standard midline dorsal approach. The operational level was determined with the aid of intraoperative fluoroscopy. A total laminectomy was used in 10 patients. The other patients received a laminotomy and medial facetectomy up to the pedicles with a high-speed drill from the right or left side, where the clinical radiculopathy was intense. Thus, by opening the lateral recess, the nerve root was relieved. The spinal canal was then enlarged by undercutting the thickened ligamentum flavum on both the right and left sides, and the microlumbar decompression process was completed. When it was necessary, a foraminotomy was performed while the isthmus was being protected. Then, under fluoroscopic control, hinged dynamic transpedicular screws were applied. Rigid rods were used in conjunction with dynamic screws. Patients were mobilized postoperatively the first day without any lumbar orthosis. After a brief postoperative rest period of 30 days, the patients were allowed to return to their daily activities without any restrictions. During all surgical procedures, we found that easier utilization of hinged dynamic pedicular screws and faster operative time resulted from application of all dynamic screws through lumbar paravertebral muscles under fluoroscopic control.

Statistical methods

In this study, NCSS (Number Cruncher Statistical System) 2007 and PASS (Power Analysis and Sample Size) 2008 Statistical Software (NCSS LLC, Kaysville, Utah) were used for statistical analyses of the data. On data analysis, mean, standard deviation, and median were used as descriptive statistics. Kolmogorov-Smirnov tests were conducted to evaluate whether the data distributions were normal. The repeated-measures test and post hoc Bonferroni test were used for evaluating normally distributed parameters. The Friedman test and Wilcoxon signed-rank test were used for evaluating non-normally distributed measurements. Data were considered significant at \(P < .05 \).

Results

The mean follow-up period was 42.93 months (range, 24–66 months). Single-level decompression was performed in 10 cases, 2-level decompressions in 14, and 3-level decompression in 6. A total lumbar laminectomy was performed in 10 cases, whereas bilateral decompression was performed in 20 cases through a unilateral approach. A clinical evaluation of the patients showed that compared with preoperative assessments, statistically significant improvements were observed in the Oswestry Disability Index and the back and leg pain VAS scores in the last follow-up control \((P = .0011) \). The Oswestry scores obtained at 3, 12, and 24 months after surgery were significantly lower than those observed before surgery \((P = .001, P = .001, and P = .001, respectively) \). Compared with the measurements obtained at 3 months postoperatively, the decreases observed at 12 months postoperatively were statistically significant \((P = .016) \), whereas decreases at 24 months postoperatively were even more statistically significant \((P = .001) \). Similarly, the measurements in the 24th postoperative month were lower than the measurements obtained in the 12th postoperative month; these differences were also highly statistically significant \((P = .001) \). The differences between follow-up VAS measurements were also highly statistically significant \((P = .001) \). Highly statistically significant decreases were observed for the VAS scores at 3, 12, and 24 months postoperatively \((P = .001, P = .001, and P = .001, respectively) \) compared with the preoperative VAS measurements. Similarly, compared with the third month postoperative measurements, decreases in both the 12th and 24th postoperative months were also highly statistically significant \((P = .002 and P = .001, respectively) \). Compared with the 12th postoperative month, the decreases observed at 24 months postoperatively were statistically significant \((P = .035) \) (Table 1).

Compared with preoperative values, there were no statistically significant differences between follow-up visits in the radiologic evaluations, such as segmental lordosis angle (\(\alpha \)) scores \((P = .125) \) and IVS scores \((P = .249) \). There were statistically significant differences between follow-up LL scores \((P = .048) \). Compared with preoperative LL mea-
surements, decreases observed in the early postoperative period were statistically significant \((P = .042) \) (Table 2).

We observed minor complications, including a subcutaneous wound infection in 2 cases, a dural tear in 2 cases, cerebrospinal fluid fistulas in 1 case, a urinary tract infection in 1 case, and urinary retention in 1 case. L5 screw loosening was observed in 1 of our 3-level decompression cases. We did not observe screw breakage or perform revision surgery in any cases (Table 3).

Discussion

In this prospective study using a posterior dynamic transpedicular stabilization system, our goal was to maintain spinal stability in patients with degenerative lumbar spinal stenosis without performing fusion while preventing pain-causing abnormal movement due to segmental degeneration and possible translation in later years.

Degenerative lumbar spinal stenosis is a degenerative disorder of the spine seen in elderly individuals. Kirkaldy-Willis and Farfan defined the pathology of discogenic pain and degenerative instability, and they stated that minimal changes in segmental stability may lead to major dysfunctions. Degenerative segmental instability develops as a result of disc degeneration and decreases in disc height, enlargement of the posterior facet joint by hypertrophy, ligament laxity, and increased movement. In an effort to keep the system intact, ligamentum flavum increases its volume and causes narrowing of the channel diameter; foraminal and central spinal stenosis usually develops as a result of such situations.46,47

The low-back pain described by Kirkaldy-Willis and Farfan and others depends on disc degeneration, which is the most important cause of primary instability. Therefore the pathogenesis of degenerative lumbar spinal stenosis, the underlying cause of foraminal or central degenerative spinal stenosis, which manifests itself with back pain or leg pain, is degenerative segmental instability. Determining the pathogenesis of degenerative spinal stenosis is important for determining the appropriate surgical treatment.

Multilevel decompressive lumbar surgeries have been widely applied to the treatment of spinal stenosis due to degenerative spinal disease over the years, but often, the

Table 1

<table>
<thead>
<tr>
<th>Evaluation of Oswestry Disability Index and VAS measurements</th>
<th>Oswestry* (mean ± SD)</th>
<th>VAS† (mean ± SD (median))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>63.77 ± 62</td>
<td>0.80 (7)</td>
</tr>
<tr>
<td>POM 3</td>
<td>22.0 ± 9.89</td>
<td>2.33 ± 1.08 (2.5)</td>
</tr>
<tr>
<td>POM 12</td>
<td>15.78 ± 6.85</td>
<td>1.17 ± 0.98 (1)</td>
</tr>
<tr>
<td>POM 24</td>
<td>8.89 ± 4.5</td>
<td>0.78 ± 0.73 (1)</td>
</tr>
<tr>
<td>(P) value</td>
<td>.001‡</td>
<td>.001‡</td>
</tr>
<tr>
<td>Post hoc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative > POM 3 ((.001))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative > POM 12 ((.001))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative > POM 24 ((.001))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POM 3 > POM 12 ((.016))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POM 3 > POM 24 ((.001))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POM 12 > POM 24 ((.001))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: POM, postoperative month.
* Repeated-measures test/post hoc Bonferroni test was used.
† Friedman test/post hoc Wilcoxon signed-rank test was used.
‡ \(P < .01 \).
§ \(P < .05 \).

Table 2

<table>
<thead>
<tr>
<th>Evaluation of LL, (\alpha), and IVS measurements</th>
<th>LL* (mean ± SD)</th>
<th>Segmental lordosis angle ((\alpha))† (mean ± SD)</th>
<th>IVS* (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>49.5 ± 10.79</td>
<td>9.27 ± 5.54 (9.5)</td>
<td>0.26 ± 0.08</td>
</tr>
<tr>
<td>Early postoperative</td>
<td>42.06 ± 11.58</td>
<td>8.39 ± 5.54 (7)</td>
<td>0.27 ± 0.09</td>
</tr>
<tr>
<td>POM 3</td>
<td>45.22 ± 13.76</td>
<td>8.39 ± 4.69 (8.5)</td>
<td>0.25 ± 0.08</td>
</tr>
<tr>
<td>POM 12</td>
<td>46.61 ± 12.67</td>
<td>8.27 ± 3.81 (8)</td>
<td>0.26 ± 0.07</td>
</tr>
<tr>
<td>POM 24</td>
<td>48.72 ± 13.03</td>
<td>9.33 ± 3.92 (9)</td>
<td>0.25 ± 0.06</td>
</tr>
<tr>
<td>(P) value</td>
<td>.048‡</td>
<td>.125</td>
<td>.249</td>
</tr>
<tr>
<td>Post hoc</td>
<td>Preoperative > early postoperative ((.042))</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Abbreviations: POM, postoperative month; NS, not significant \((P > .05) \).
* Repeated-measures test/post hoc Bonferroni test was used.
† Friedman test/post hoc Wilcoxon signed-rank test was used.
‡ \(P < .05 \).
results have not been perfect.1,9–12 Back pain and sciatica are frequently seen after lumbar spinal stenosis surgery. It is thought that complaints after decompressive surgery, including deterioration in the capsular ligament, loosening in the interspinous and supraspinous ligaments, and removal of the lamina, are due to secondary segmental instability, even when performed from 1 side with removal of at least a portion of the facet joints.1,4,14,17–20 The biomechanical importance of the posterior elements was emphasized in some studies.21–25 Adams and Hutton22 determined the load magnitude on various structures of the spine preventing the sagittal translation as a percentage, as follows: intact facet capsules (39%), intact disc and annulus (29%), supraspinous and interspinous ligaments (19%), and ligamentum flavum (13%). In a study by Cusick et al,25 degradation of the facet joint, posterior soft tissue, and ligament structure increased the stress on the disc, anterior and posterior longitudinal ligaments, and annulus. This situation may lead to pain with clinical and radiologic instability. As shown in these studies, removing the posterior elements may create instability and postoperative back pain and may lead to compression of neural elements accompanied by sciatica. Therefore, when the pathogenesis of spinal stenosis is a primary degenerative segmental instability, a resection of the posterior elements and decompression during surgery increase the instability. As a result, the existing instability increases, and unsuccessful clinical results with back pain and sciatica are observed. Therefore we believe that including posterior stabilization in the treatment of spinal stenosis with decompression is necessary so that segment stability is ensured and instability is controlled. As a result, failed back syndrome is prevented, and better clinical results are observed.

To prevent instability, fusion has been used in decompression surgeries in degenerative lumbar spinal stenosis cases for years; its importance is especially emphasized in multilevel laminectomies.2,20,26,29 It is known that degenerative lumbar spinal stenosis is usually seen in elderly patients. Bone quality in this age group of patients is usually low because of osteopenia, and patients usually have comorbidity. Therefore a short duration of the operation and less invasive surgical procedure are important in terms of mortality and morbidity of the operation. Fusion surgery has long been the gold standard for treatment of painful spinal degenerative instability cases. However, because of long operation times and osteopenic bone structures, fusion surgery brings a high risk of pseudarthrosis and adjacent segment disease during the postoperative period. In addition, donor-site morbidity has been reported in about 39% of fusion cases, and donor-site pain may be present up to 1 year postoperatively.31,34–36 Even in patients with advanced fusion, satisfactory clinical results range between 16% and 95%.35

Recently, some biomechanical studies have reported that dynamic stabilization (dynamic hinged transpedicular screw and rigid rod) provides stabilization that is similar to that of rigid systems.21,50–53 Xu et al53 reported that rigid and dynamic pedicle screws provided sufficient stability at a damaged segment during all loading situations. This study showed that the dynamic pedicle screws permitted slightly more motion than rigid pedicle screws. In a recent in vitro experiment, Schmoelz et al51 showed that compared with the intact spinal segment, a stabilization device with hinged dynamic screws reduced the range of motion in flexion-extension and lateral bending after bisegmental decompression; Cosmic-MIA (Ulrich Medical, Ulm, Germany), in clinical use since 2002, was also used in that study. In another biomechanical study, Bozkuş et al50 showed that dynamic screws allowed significantly greater motion than standard rigid screws in all directions of loading. In addition, hinged dynamic screws allowed less stress shielding than standard rigid screws.50 Dynamic stabilization systems have been developed to prevent the major disadvantages of rigid fixation, such as pseudarthrosis and adjacent segment degeneration.33,54 Indications for a dynamic stabilization system are segmental hypermobility, segmental hypomobility, isolated segmental disc degeneration, and 1-level or multilevel spinal canal stenosis.

The first known posterior dynamic system is the Graf ligamentoplasty system (SEM, CO, Mountrouge, France), and after several studies, its insufficiency has been understood. Kanayama et al56 reported that spinal drift was not corrected with the Graf system. Then, the Dynesys Posterior Dynamic Stabilization System (Zimmer GmbH, Winterthur, Switzerland) was developed by considering the disadvantages of the Graf ligamentoplasty system. Dynesys is a semi-rigid fixation system that allows minimal extension and flexion with the help of a spacer located between 2 segmental rigid pedicle screws.57 It has been used in the treatment of degenerative segmental diseases of the lumbar spine for over 10 years.

Schmoelz et al58 in their in vitro study compared the Dynesys dynamic nonfusion system with an internal fixator and examined its effects on spine stability. As a result, they reported that Dynesys provided a robust stability in patients with degenerative spinal pathology and therefore can be considered as an alternative method to fusion surgery. Stoll et al41 reported significant improvements in pain and Oswestry scores in their lumbar instability series after a mean follow-up period of 38 months. In addition, they showed that the dynamic stabilization system is a less in-

<table>
<thead>
<tr>
<th>Complication</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous wound infection</td>
<td>2</td>
</tr>
<tr>
<td>Dural tear</td>
<td>2</td>
</tr>
<tr>
<td>Cerebrospinal fluid fistula</td>
<td>1</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>1</td>
</tr>
<tr>
<td>Urinary retention</td>
<td>1</td>
</tr>
<tr>
<td>L5 screw loosening</td>
<td>1</td>
</tr>
</tbody>
</table>
In our study we have obtained promising and improved clinical and radiologic results that corroborate the findings of Stoll et al.41 Schnake et al.31 Di Silvestre et al.44 and Putzier et al.59 Our results support the idea that dynamic stabilization is an effective and important alternative to fusion in the treatment of degenerative lumbar spinal stenosis. The dynamic pedicular screw–rigid rod system that we applied allows potential sagittal movement with the hinge between the screw head and shank. Mechanically, movement occurs between a longitudinally positioned rod and a sagittally positioned screw leg. The joint connection between the screw and rod reduces the stress on the system during flexion, and therefore implant failure is lower than with dynamic screw-rod systems. In this system some of the load is shared and transferred by the system; therefore there is a reduction in stress-shielding effects on the bone.63,64 Reduced stiffness helps the load distribution, and adjacent disc distance degeneration slows down. We observed no obvious degeneration on adjacent levels by MRI comparison preoperatively and postoperatively at 2 years’ follow-up; however, this observation does not mean that the system protects adjacent segments. In a recently published study, dynamic screws were used with dynamic rods in the treatment of lumbar degenerative disc disease, and good clinical results were achieved.65

Conclusion

The result of using a posterior dynamic transpedicular stabilization system (dynamic pedicular screw–rigid rod) in degenerative lumbar spinal stenosis is achieving improved clinical and radiologic results. Considering the side effects of fusion surgery such as longer operation times, pseudarthrosis, and prolonged donor pain periods, posterior dynamic stabilization should be regarded as an important alternative treatment option to fusion in degenerative lumbar spinal stenosis with chronic instability. In the future, dynamic systems can replace fusion systems in the treatment of degenerative diseases of the spine. Furthermore, there is a need for comparative studies regarding lumbar degenerative spinal stenosis. Studies comparing posterior dynamic and rigid systems should be performed particularly for patients having multilevel degenerative stenosis.

References

54. Kanayama M, Hashimoto T, Shigenobu K, Oha F, Ishida T, Yamane S. Non-fusion surgery for degenerative spondylolisthesis using artifi-

