Direct transoral reduction of anteriorly displaced type II odontoid fracture during anterior odontoid screw fixation: Review of literature

Tamer Orief, Khaled Almusrea and Ibrahim Assiri

Int J Spine Surg 2012, 6 () 206-209
doi: https://doi.org/10.1016/j.ijsp.2012.06.002
http://ijssurgery.com/content/6/206

This information is current as of July 7, 2019.

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://ijssurgery.com/alerts
Direct transoral reduction of anteriorly displaced type II odontoid fracture during anterior odontoid screw fixation: Review of literature

Tamer Orief, MSc, MD, Khaled Almusrea, MD, FRCSC, Ibrahim Assiri, MBBS, FRCSC, FACS *

Department of Spine Surgery, National Neurosciences Institute, King Fahad Medical City, Riyadh, Saudi Arabia

Abstract

Background: The anteriorly displaced type II odontoid fracture is treated either conservatively by halo-vest brace immobilization or surgically by posterior atlantoaxial fusion. Anterior odontoid screw fixation is not advised for this pattern of odontoid fracture because of the difficult trajectory for screw insertion despite its advantage of salvaging the upper cervical spine rotatory range of movement. This article presents a new transoral manipulation technique for reduction of anteriorly displaced type II odontoid fracture and review of the literature.

Methods: A 24-year-old man presented 2 weeks after a motor vehicle accident with anteriorly displaced type II odontoid fracture. Intraoperatively, after unsuccessful attempts to reduce the anteriorly displaced type II odontoid fracture, complete reduction of the odontoid process and proper screw placement were achieved by direct transoral manipulation with an army-navy hand retractor. Additional manual pressure on the spinous process of the cervical spine at the same time has resulted in better reduction. The patient was followed up neurologically and radiologically to assess the reduction and healing of the odontoid fracture.

Results: Postoperatively, the patient was neurologically intact, and his computed tomography cervical spine scan showed proper placement of the odontoid screw with adequate reduction of the odontoid process. At the 3-month follow-up, the patient was neurologically intact and had painless full range of cervical spine movement, and his computed tomography cervical spine scan showed a well-healed odontoid fracture.

Conclusions: Direct transoral manipulation with an army-navy hand retractor can be used to assist in reducing the anteriorly displaced type II odontoid fracture during anterior odontoid screw fixation.

© 2012 ISASS - International Society for the Advancement of Spine Surgery. Published by Elsevier Inc. All rights reserved.

Keywords: Displaced; Fixation; Fracture; Manipulation; Odontoid; Transoral
transverse ligament disruption; fracture nonunion; and irre-ducible displaced odontoid fracture.8

This article presents a new transoral manipulation tech-nique for reduction of an anteriorly displaced type II odontoid fracture during anterior odontoid screw fixation.

Methods

A 24-year-old male patient presented with type II odonto-oid fracture, due to a motor vehicle accident 2 weeks earlier. He had severe neck pain on admission without neurologic deficits. A computed tomography (CT) scan of his cervical spine showed a type II anteriorly displaced (6.2 mm) odontoid fracture (Fig. 1).

The surgical options were discussed with the patient, and we decided to perform the anterior odontoid screw fixation procedure to treat the unstable odontoid fracture.

With the patient under general anesthesia by use of Fiberoptic intubation with somatosensory evoked potential and electromyography monitoring, a Mayfield 3-pin head holder was applied to secure the head. A radiolucent mouth block was used to keep the mouth open to provide an anteroposterior view of the odontoid process. A bi-planar fluoroscope was brought into position, and closed reduction under fluoroscopic guidance was attempted by use of combinations of distraction with flexion or extension without success. After the standard exposure for odontoid screw placement had been performed, the anteriorly displaced odontoid fracture remained misaligned. At that point, under lateral fluoroscopic imaging, the blade of an army-navy hand retractor (25 mm) was introduced into the oropharynx, with exertion of continuous pressure directly applied over the posterior pharyngeal wall and anterior to the arch of the atlas, resulting in nearly anatomic reduction of the displaced odontoid fracture. Additional pressure on the spinous process of the cervical spine in the back of the neck at the same time has resulted in better reduction. While pressure was applied on the odontoid process, the guidewire passed through the C2 body, crossing the fracture site, followed by insertion of a lag, partially threaded cannulated odontoid screw (4.0 × 36 mm). The surgeon was ready to remove the guidewire once the reduction was achieved and the odontoid screw passed the fracture site to avoid guidewire breakage (Fig. 2). The screw appeared to be holding satisfactorily

![Fig. 1. Preoperative CT cervical spine scans. (A) The coronal CT scan showed a type II odontoid fracture. (B) The sagittal CT scan showed an anteriorly displaced odontoid process (6.2 mm).](http://ijssurgery.com/)

![Fig. 2. An intraoperative fluoroscopic image showed the transoral position of the army-navy hand retractor reducing the anteriorly displaced odontoid fracture during screw placement.](http://ijssurgery.com/)
when the neck was gently placed through a range of flexion and extension under fluoroscopy.

Results

The patient’s postoperative course was uneventful with no neurologic deficits or dysphagia from the oropharyngeal manipulation. The CT cervical spine scan showed proper placement of the odontoid screw into the body of C2 with adequate reduction (2.3 mm) of the odontoid process (Fig. 3).

At the 3-month follow-up, the patient is neurologically intact and has full range of cervical spine movement without pain, and the CT cervical spine scan showed a well-healed odontoid fracture (Fig. 4).

Discussion

Anatomic reduction of the fractured odontoid process is imperative before one attempts the anterior odontoid screw...
fixation technique because the inability to achieve proper reduction of the anteriorly displaced odontoid process makes the surgery more challenging given the difficult trajectory for screw insertion.

With regard to the management of the irreducible anteriorly displaced odontoid fracture, the posterior stabilization of the C1-2 complex with transarticular screws with sublaminar wiring appears to be the recommended surgical treatment option. In the presented case, the age of the patient made us choose the anterior odontoid screw fixation technique because the inability to achieve proper reduction of the anteriorly displaced odontoid fracture makes the surgery more challenging given the difficult trajectory for screw insertion.

The placement of 2 odontoid screws is more challenging with no biomechanical advantage as compared with 1-screw odontoid fixation. Sasso et al found no significant difference when they compared the use of 1 screw versus 2 screws for stabilization of the odontoid process under loading to failure. Graziano et al also found no difference between 1 screw and 2 screws in bending and torsional stiffness of the instrumented odontoid process.

There are different transoral manipulation techniques for reduction of displaced type II odontoid fractures described in the literature (Table 1). Elias et al reported that transoral digital manipulation could reduce the anteriorly displaced type II odontoid fracture to aid in screw fixation. Piedra et al used the same technique of closed transoral placement type II odontoid fracture to aid in screw fixation.

Conclusions

We found that direct transoral manipulation with an army-navy hand retractor can be used to assist in reducing the anteriorly displaced type II odontoid fracture during anterior odontoid screw fixation.

References