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ABSTRACT
Background:  Ankylosing spondylitis (AS) and diffuse idiopathic skeletal hyperostosis (DISH) are distinct pathological 

entities that similarly increase the risk of vertebral fractures. Such fractures can be clinically devastating and frequently portend 
significant neurological injury, thus making their prevention a critical focus. Of particular significance, spinal fractures in 
patients with AS or DISH carry a considerable risk of mortality, with reports on 1-year injury-related deaths ranging from 24% 
to 33%. As such, the purpose of this study was to conduct machine learning (ML) analysis to predict postoperative mortality 
in patients with AS or DISH using the Nationwide Inpatient Sample Healthcare Cost and Utilization Project (HCUP-NIS) 
database.

Methods:  HCUP-NIS was queried to identify adult patients carrying a diagnosis of AS or DISH who were admitted for 
spinal fractures and underwent subsequent fusion or corpectomy between 2016 and 2018. Predictions of in-hospital mortality in 
this cohort were then generated by three independent ML algorithms.

Results:  An in-hospital mortality rate of 5.40% was observed in our selected population, including a rate of 6.35% in 
patients with AS, 2.81% in patients with DISH, and 8.33% in patients with both diagnoses. Increasing age, hypertension with 
end-organ complications, spinal cord injury, and cervical spinal fractures each carried considerable predictive importance across 
the algorithms utilized in our analysis. Predictions were generated with an average area under the curve of 0.758.

Conclusions:  This study’s application of ML algorithms to predict in-hospital mortality among patients with AS or 
DISH identified a number of clinical risk factors relevant to this outcome.

Clinical Relevance:  These findings may serve to provide physicians with an awareness of risk factors for in-hospital 
mortality and, subsequently, guide management and shared decision-making among patients with AS or DISH.

Level of Evidence:  4.

Complications

Keywords: machine learning, ankylosing spondylitis, diffuse idiopathic skeletal hyperostosis, HCUP-NIS, in-hospital mortality

INTRODUCTION

Ankylosing spondylitis (AS) and diffuse idiopathic 
skeletal hyperostosis (DISH) are distinct pathological 
entities that similarly contribute to fractures of the spine 
through alterations of its biomechanical properties.1,2 
Specifically, both AS and DISH entail ankylosis of con-
tiguous vertebral segments, which ultimately renders 
the spine rigid, brittle, and susceptible to fracture with 
even minor trauma.3–6 Such fractures are clinically dev-
astating and frequently portend significant neurological 
injury, thus making their prevention a critical focus in 
the treatment of patients with AS or DISH.2

Of particular significance, spinal fractures in patients 
with AS or DISH carry a considerable risk of mortal-
ity, with reports on 1-year injury-related deaths ranging 
from 24% to 33%.7 While the causes of mortality in 
these patients are multifactorial and often stem from 
comorbid conditions, risk factors such as age, female 
sex, and spinal cord injuries have been found to predict 
increased mortality in these populations.7 However, 
with the increasing capabilities of machine learning 
(ML) analysis and its demonstrated efficacy in the pre-
diction of patient outcomes, further analysis using this 
methodology is warranted to identify and mitigate the 
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variables associated with mortality in patients with AS 
or DISH.

ML is a widely utilized means of predictive anal-
ysis that can employ artificial intelligence to classify 
and quantify risk factors for a chosen clinical outcome. 
This methodology has been broadly incorporated into 
medical research to provide insight into a number of 
perioperative outcomes, including reoperation, dis-
charge destination, and mortality.8–11 Thus, similar utili-
zation of this approach to examine mortality in patients 
with AS or DISH may be useful for expanding knowl-
edge toward the variables that incur an increased risk 
of mortality in this unique subset of patients. As such, 
the purpose of this study was to conduct ML analysis in 
order to predict postoperative mortality in patients with 
AS or DISH using the Nationwide Inpatient Sample 
Healthcare Cost and Utilization Project (HCUP-NIS) 
database.

METHODS

After receiving a notice of exemption from our insti-
tution’s review board, the HCUP-NIS database was 
queried using SAS 9.4 (Cary, NC) to identify adult 
patients carrying a diagnosis of AS or DISH who were 
admitted for spinal fractures and underwent subsequent 
fusion or corpectomy between 2016 and 2018. A full 
list of the International Classification of Diseases 10 
revision (ICD-10) diagnostic and procedural codes used 
to identify this population can be found in the . Patients 
for which spinal fracture was not the primary cause of 
admission and those with malignancy were excluded 
from our analysis. Additionally, the use of the Agency 
for Healthcare Research and Quality Elixhauser Comor-
bidity Software Refined for the International Classifica-
tion of Diseases, Tenth Revision, Clinical Modification 
(ICD-10-CM), v2023.1, was used to identify comorbid 
conditions within our refined population.12

Three supervised ML classification algorithms were 
constructed in the Python programming language using 
the scikit-learn library.13,14 These algorithms included 
Random Forest Classifier, Gradient Boosting Classifier, 
and Adaptive Boosting Classifier (ADAboost). These 
algorithms were tasked with predicting in-hospital mor-
tality based on a given set of patient variables, including 
age, race, socioeconomic characteristics, comorbidities, 
and surgical factors.

Prior to analysis, preprocessing was performed using 
scikit-learn’s StandardScaler to standardize variables 
across our cohort in order to bring all features to the 
same magnitude.14 A train test split was performed 
using scikit-learn’s train_test_split method in which 

70% of our population’s data was randomly chosen 
and used for training, and the remaining 30% was used 
for later testing of the model’s performance.14 Training 
of each algorithm involved application of sckit-learn’s 
RandomizedSearchCV method along with a stratified 
5-fold crossvalidation to determine optimal hyperpa-
rameters on the training data and ensure model gener-
alizability.14,15 Once the appropriate hyperparameters 
were determined, the final models were subsequently 
evaluated using the testing data to determine the model’s 
performance.

The performance of the 3 ML models was then eval-
uated by a series of commonly used metrics, includ-
ing classification accuracy, sensitivity, specificity, and 
area under receiver operating characteristics curve.16–18 
The Matplotlib library in Python was used for graph-
ical visualization of the receiver operating charac-
teristics produced by the three models.19 Importance 
of each variable was quantified using two commonly 
used feature importance methods, namely, permuta-
tion feature importance (PFI) and Gini feature impor-
tance (GFI) through utilization of ELI5 library (version 
0.11.0) and scikit-learn’s feature_importance method, 
respectively.14,20,21 PFI is generated by measuring 
the change in model performance when a single vari-
able or a feature is removed, breaking the relationship 
between the feature and the predicted variable. Thus, a 
variable given a greater PFI value indicates a decrease 
in the predictive performance of the model when that 
feature is removed.20,21 GFI quantifies the decrease in 
the Gini impurity index that is seen after a node split 
in an anglorithm’s decision tree and utilizes this value 
as a measure of feature importance. Thus, features with 
larger decreases in impurity after a certain node split are 
deemed more important in predicting the outcome of 
interest.14,21,22 As our study utilized multiple ML algo-
rithms, the PFIs and GFIs generated by each algorithm 
for a given variable were averaged to yield a composite 
measure of their relative importance. Thus, variables 
with higher average PFI (aPFI) and average GFI (aGFI) 
values represented features that contributed signifi-
cantly to the performance of multiple algorithms and 
thus carried greater overall value in producing effective 
predictions across these algorithms.

Statistical analysis was performed using SAS 9.4 
(Cary, NC) with statistical significance defined as P < 
0.05. Discharge weights were applied to calculate the 
nationally presentable frequency. Differences between 
categorical variables were assessed using the Pearson’s 
χ2 test, while numerical differences were assessed using 
independent sample t test. Categorical variables are 
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presented as frequencies in percentages, and continuous 
variables are presented as means and SDs.

RESULTS

Following a query of the HCUP-NIS database and 
application of our selected inclusion and exclusion cri-
teria, 2960 patients were identified for further analysis 
within our study (Table 1). Of this cohort, 1890 and 890 
patients featured a diagnosis of AS or DISH, respec-
tively, while 180 patients carried both diagnoses. With 
regard to our primary outcome, an in-hospital mortality 
rate of 5.40% was observed in our selected population, 
including a rate of 6.35% in patients with AS, 2.81% 
in patients with DISH, and 8.33% in patients with both 
diagnoses. A full description of the clinical and demo-
graphic characteristics of this cohort is included in 
Table 1.

Each algorithm constructed for our analysis was then 
tasked with independently identifying predictors of 
in-hospital mortality among this cohort. In total, these 
algorithms yielded an average accuracy of 87.52% and 
generated predictions with an average sensitivity and 
specificity of 30.0% and 90.9%, respectively. With 
regard to predictive performance, the aggregate of our 
constructed algorithms produced an area under the curve 
(AUC) of 0.758, with the Adaptive Boosting classifier 
performing most effectively (AUC = 0.766), followed 
by the Random Forest (AUC = 0.756) and Gradient 
Boosting (AUC = 0.751) classifiers. The ROCs and 
information regarding individual performance of each 
algorithm is provided in Figure 1 and Table 2.

Upon comparison of the PFI values generated by 
these algorithms, a number of variables were distin-
guished as highly predictive of in-hospital mortality 
within our sample. Specifically, fractures of the tho-
racic spine (aPFI = 0.0843), complicated hypertension 
(aPFI = 0.0541), spinal cord injuries (aPFI = 0.0541), 
fractures of the cervical spine (aPFI = 0.0402), DISH 
affecting the thoracic spine (aPFI = 0.038), and age 
(aPFI = 0.034) each carried considerable importance 
while also demonstrating statistical significance among 
those experiencing in-hospital mortality. A record of the 
aPFI values and sample means for these variables can 
be found in Table 3.

Similarly, each algorithm also reported a number 
of statistically significant variables deemed important 
through the use of GFI. These included age (aGFI = 
0.172), fractures of the cervical spine (aGFI = 0.065), 
spinal cord injuries (aGFI = 0.057), AS of the lumbar 
spine (aGFI = 0.044), complicated hypertension (aGFI 
= 0.037), perivascular disease (aGFI = 0.036), spinal 

Table 1.  Patient characteristics (n = 2960).

Characteristic Mean ± SD or 
% (n)

Age, y, mean ± SD 73.13 ± 10.10
Sex
 � Male 84.5% (2500)
 � Female 15.5% (460)
Race
 � White 76.0% (2250)
 � African American 4.6% (135)
 � Hispanic 8.3% (245)
 � Asian/Pacific Islander 2.0% (60)
 � Native Americans 0.5% (15)
 � Others 2.4% (70)
 � Unknown 6.2% (185)
Patient Location
 � “Central” counties of metro areas of ≥1 million 

population
29.5% (875)

 � “Fringe” counties of metro areas of ≥1 million 
population

24.2% (720)

 � Counties in metro areas of 250,000–999,999 
population

20.0% (590)

 � Counties in metro areas of 50,000–249,999 
population

7.1% (205)

 � Micropolitan counties 11.3% (335)
 � Not metropolitan or micropolitan counties 7.4% (220)
 � Unknown 0.5% (15)
Median Household Income
 � 0–25th percentile 21.8% (645)
 � 26th–50th percentile 26.9% (795)
 � 51st–75th percentile 26.2% (775)
 � 76th–100th percentile 22.8% (675)
 � Unknown 2.4% (70)
Days From Admission to Procedure 2.36 ± 2.68
Primary Payer
 � Medicare 71.7% (2125)
 � Medicaid 2.3% (65)
 � Primary insurance 20.6% (610)
 � Self-pay 0.3% (10)
 � No charge 0.0% (0)
 � Other 4.7% (140)
 � Unknown 0.3% (10)
Comorbidities
 � Alcoholism 7.8% (230)
 � Diabetes complicated 23.0% (680)
 � Drug abuse 1.4% (40)
 � Hypertension complicated 25.0% (740)
 � Chronic lung condition 16.9% (500)
 � Obese 26.2% (775)
 � Perivascular disease 8.3% (245)
Fracture Level
 � Cervical 31.9% (945)
 � Thoracic 57.2% (1695)
 � Lumbar 10.8% (320)
Surgical Procedure
Fusion
 � Cervical fusion 21.5% (635)
 � Cervicothoracic fusion 3.2% (95)
 � Thoracic fusion 44.6% (1320)
 � Thoracolumbar fusion 9.0% (265)
 � Lumbar fusion 3.7% (110)
 � Lumbosacral fusion 0.8% (25)
 �  >2 levels 54.7% (1620)
Corpectomy
 � Cervical corpectomy 3.7% (110)
 � Thoracic corpectomy 10.8% (320)
 � Lumbar corpectomy 2.2% (65)
 �  >2 levels 0.2% (5)
Spinal cord injury 13.3% (395)
Ankylosing Spondylitis
 � Cervical 13.3% (395)
 � Cervicothoracic 1.2% (35)
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fusion >2 levels (aGFI = 0.027), and Hispanic ethnicity 
(aGFI = 0.022). The GFI rankings produced by each 
algorithm as well as the sample means associated with 
each variable are available in Table 4.

Further comparison of the variables identified by 
both PFI and GFI allowed for isolation of clinical char-
acteristics that were deemed important to predicting 
in-hospital mortality across both methodologies. Of the 
variables that were previously independently identified, 
cervical spine fractures, spinal cord injuries, and com-
plicated hypertension carried statistical significance 
and predictive importance as quantified by both GFI 
and PFI.

DISCUSSION

Application of ML analysis to the HCUP-NIS data-
base identified a number of predictive variables for in-
hospital mortality following spinal fracture fixation in 
patients with AS or DISH. Notably, age, thoracic spinal 
fractures, complicated hypertension, spinal cord injury, 
and cervical spinal fractures were among the great-
est predictive importance across the ML algorithms 
utilized in our analysis. Additionally, fractures of the 
cervical spine, spinal cord injuries, and complicated 
hypertension were found to carry importance across 
both methods of feature importance quantification uti-
lized in our analysis. While previous studies have docu-
mented several risk factors that contribute to in-hospital 
mortality in this population, the use of ML to validate 
these risk factors and their relative contributions to this 
outcome provides an additional level of understanding 
to this issue.

The results of this study serve to corroborate many 
of the variables that have been previously documented 
as risk factors for in-hospital mortality in patients with 
AS or DISH. In a review of in-hospital complications 
experienced by this population, Bernstein et al23 iden-
tified age and cervical spine fractures as independent 
predictors of mortality, while spinal cord injuries were 
correlated with increased rate of complications through-
out admission. Concurrently, studies by Ull et al and 
Robinson et al also reported spinal cord injuries, age, 
and increasing medical comorbidities including hyper-
tension as significant predictors of mortality within the 
acute postoperative period.24,25 In similarly identifying 
these variables through the use of ML-based predictive 
analysis, our study serves to substantiate the importance 
of these risk factors while also providing a measure of 
their relative contributions to producing in-hospital 
mortality. Furthermore, alignment of our results with 
those of prior studies demonstrates the utility of ML 
as an effective means of outcome prediction as previ-
ously reported variables were also deemed important by 
our study despite differences in methodology and data 
sources.

Knowledge of the variables identified by our anal-
ysis provides clinicians with validated and quantified 
predictors of mortality that may serve to guide periop-
erative decision-making in this high-risk patient pop-
ulation. For instance, the risk of mortality in patients 
with AS or DISH that feature complicated hypertension 
may be diminished if providers are able to promptly 
identify this risk factor and coordinate medical opti-
mization throughout the perioperative period. Addi-
tionally, by providing a measure of each variable’s 

Characteristic Mean ± SD or 
% (n)

 � Thoracic 24.8% (735)
 � Thoracolumbar 2.9% (85)
 � Lumbar 5.2% (155)
 � Multiple sites 4.2% (125)
 � Unspecified region 19.9% (590)
Ankylosing Hyperostosis (DISH)
 � Cervical 7.8% (230)
 � Cervicothoracic 0.8% (25)
 � Thoracic 13.2% (390)
 � Thoracolumbar 1.7% (50)
 � Lumbar 2.0% (60)
 � Multiple sites 2.9% (85)
 � Unspecified region 6.1% (180)
Mixed (AS + DISH) 6.1% (180)
In-hospital deaths 5.4% (160)

Abbreviations: AS, ankylosing spondylitis; DISH, diffuse idiopathic skeletal 
hyperostosis.

Table 1.  Continued.

Figure.  Graphical representation of each algorithm’s area under the receiver 
operating characteristics curve (AUROC) in prediction of in-hospital mortality. 
Abbreviations: ADAboost, Adaptive Boosting Classifier; GB, Gradient Boosting 
Classifier; RF, Random Forest Classifier.
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relative importance, physicians may effectively triage 
the requirements of these at-risk and medically complex 
patients through identification of the characteristics 
most associated with short-term mortality. Furthermore, 
as nonoperative management of vertebral fractures in 
these populations has been found to carry a compara-
ble risk of mortality to that of surgical intervention, the 
analysis provided by this study may be utilized to iden-
tify patients who are better suited for conservative treat-
ment according to their unique profile of perioperative 
risk factors.2 In this high-risk and medically complex 
cohort of patients, the decision for surgical vs nonoper-
ative management is undoubtedly challenging and thus 
must be guided by a thorough consideration of relevant 
risk factors for mortality, including those identified by 
our analysis.

The findings produced by our analysis also serve to 
provide comparison of 2 distinct methods of generat-
ing feature importance measures within ML analysis. 
Interestingly, despite being applied to the same data 
source, the features identified by GFI and PFI differed 
considerably, with only 3 variables sharing common 
importance across these 2 methods. While this high-
lights the variation that may be present between GFI 
and PFI, it also serves to both identify a broader sample 
of predictive variables and more thoroughly validate 
those that were deemed predictive by both metrics. 
Similarly, this study’s use of multiple independent ML 
algorithms adds to the value of our findings by ensuring 
that each variable reported was deemed important by 
several independent analyses rather than the predictions 

of a single algorithm. Both aspects of our methodology 
serve to further support the importance of the variables 
identified in our analysis, in turn, supplying providers 
with the most pertinent predictors of mortality in our 
population of interest.

There are several limitations that must be recognized 
when considering the results of this study. Namely, the 
use of the HCUP-NIS database limits the conclusions that 
may be drawn from our analysis. For instance, although 
this database provides an extensive and widely utilized 
source of procedural outcomes, it is inherently incapa-
ble of capturing the entirety of our cohort of interest, thus 
limiting the generalizability of our findings. Similarly, 
the outcomes reported by this study are reflective solely 
of the complications occurring throughout the duration of 
hospital admission, thus limiting the span of our observa-
tion and analysis. As such, the risk factors exhibited by 
patients experiencing short-term postoperative mortality 
at home, in rehabilitation centers, or at nursing facilities 
may not be fully characterized by our study. Additionally, 
it is important to note that both PFI and GFI, while widely 
being the utilized methods of quantifying variable impor-
tance, are not necessarily reflective of the reality of clini-
cal practice. Rather, each serves as an indirect measure of 
the importance of features within the context of a trained 
model. 26,27 Furthermore, both feature importance methods 
are subject to bias. Bias in PFI arises when features are 
highly correlated, leading to the permutation of one vari-
able inadvertently impacting the predictive power of other 
highly correlated features, potentially leading to inaccu-
rate importance measures.26,27 GFI is also subject to bias 

Table 2.  Algorithm performance in predicting in-hospital mortality.

Algorithm Accuracy Sensitivity Specificity
Area Under the 

Curve

Adaptive Boosting Classifier 79.88% 0.400 0.8225 0.7657
Random Forest 92.74% 0.300 0.9645 0.7562
Gradient Boosting 89.94% 0.200 0.9408 0.7509
Average 87.52% 0.300 0.9093 0.7576

Table 3.  Permutation feature importance for prediction of in-hospital death following surgical treatment of vertebral fractures in patients with AS and DISH.

Outcome and Features
Average Permutation Feature 

Importance

Mean ± SD or % (n)

PSurvived to Discharge In-Hospital Death

Days from admission to surgery 0.0851 2.36 ± 2.72 2.14 ± 1.58 0.828
Thoracic fracture 0.0843 55.2% (1635) 2.0% (60) <0.001
Hypertension with end-organ 

complications
0.0541 22.5% (665) 2.5% (75) <0.001

Spinal cord injury 0.0541 11.5% (340) 1.9% (55) <0.001
Cervical fracture 0.0402 29.4% (870) 2.5% (75) <0.001
Age 0.0338 72.89 ± 10.17 77.34 ± 7.69 <0.001
Primary payer - Medicare 0.0221 67.1% (1985) 4.7% (140) <0.001
Thoracic fusion 0.0212 42.3% (1250) 2.4% (70) 0.825
Median household income: 76th–100th 

percentile
0.0161 22.3% (660) 0.5% (15) <0.001

Cervical fusion 0.0156 19.8% (585) 1.69% (50) 0.002
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as it has a tendency to favor features with high cardinality 
or a large number of unique values, potentially leading 
to overestimation of their importance compared to other 
features.26,27 Clinical decisions often involve complex 
interactions among multiple variables and considerations 
beyond predictive ability alone. These important measures 
can help to guide the understanding of feature relevance, 
but they should be considered as complementary tools 
rather than absolute determinants of clinical significance.

CONCLUSION

This study’s application of ML algorithms to predict 
in-hospital mortality among patients with AS or DISH 
identified a number of clinical risk factors relevant to 
this outcome through analysis of the NIS-HCUP data-
base. Namely, age, thoracic spinal fractures, complicated 
hypertension, spinal cord injury, and cervical spinal frac-
tures each carried notable importance and statistical sig-
nificance as independent predictors of mortality with this 
cohort of high-risk patients. These findings may serve to 
provide physicians with an awareness of risk factors for 
in-hospital mortality and, subsequently, strategies through 
which such variables may be mitigated.
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