TY - JOUR T1 - Integrated Fixation Cage Loosening Under Fatigue Loading JF - International Journal of Spine Surgery JO - Int J Spine Surg DO - 10.14444/4020 VL - 11 IS - 3 SP - 20 AU - Srinidhi Nagaraja AU - Vivek Palepu Y1 - 2017/01/01 UR - http://ijssurgery.com//content/11/3/20.abstract N2 - Background Screw loosening is a well-known adverse event in traditional spinal fusion instrumentation. This phenomenon may hinder segmental stability of the spine leading to bony non-union. In recent years numerous lumbar integrated fixation cages (IFC) have been introduced that offer a low profile alternative to a standard cage with an anterior plate (AP+C). The fixation approach for IFCs is different than a traditional anterior approach; therefore, it is unclear whether IFCs may loosen from the surrounding bone over time. The purpose of this study was to quantify screw loosening of IFC devices compared to AP+C implants under fatigue loading using micro-CT and image processing techniques.Methods L2-3 and L4-5 functional spinal units (FSUs) were obtained from nine human lumbar spines. These FSUs were then reconstructed with either AP+C or IFC implants designed to attach to vertebral bodies using four screws (two top and two bottom for AP+C; two medial and two lateral for IFC). The reconstructed specimens were fatigued in flexion-extension load of ±3 Nm at 1Hz for first 5,000 cycles and it was increased to ±5 Nm until 20,000 cycles. After removing screws to prevent image artifact, micro-CT scans were performed on all FSUs post-fatigue. These images were post-processed to calculate three-dimensional volumes around screw holes created due to damage at the screw-implant interface.Results IFC screws had significantly greater (p=0.008) screw hole volumes compared to AP+C screws after fatigue testing. This increased screw hole volume for IFC devices was mainly due to loosening in medial screws. Medial screws had significantly greater (p<0.003) screw hole volumes compared to lateral IFC screws and all AP+C screws. There was no difference (p>0.888) between the screw hole volumes of lateral IFC, top AP+C, and bottom AP+C screws.Conclusions This study elucidated screw-loosening mechanisms in integrated fixation cages under simulated physiological loading. In particular, spatial differences in fixation was observed for IFC screws across the vertebra where medial screws loosened at a greater frequency compared to lateral screws post-fatigue. This novel technique may also be used to quantitatively investigate screw fixation post-fatigue testing in a variety of spinal devices. ER -