Skip to main content

Advertisement

Log in

Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men?

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In a prospective cohort study of 5,995 older American men (MrOS), users of angiotensin-converting enzyme (ACE) inhibitors had a small but significant increase in bone loss at the hip over 4 years after adjustment for confounders. Use of angiotensin II AT1 receptor blockers (ARB) was not significantly associated with bone loss.

Introduction

Experimental evidence suggests that angiotensin II promotes bone loss by its effects on osteoblasts. It is therefore plausible that ACE inhibitor and ARB may reduce rates of bone loss. The objective of this study is to examine the independent effects of ACE inhibitor and ARB on bone loss in older men.

Methods

Out of 5,995 American men (87.2%) aged ≥65 years, 5,229 were followed up for an average of 4.6 years in a prospective six-center cohort study—The Osteoporotic Fractures in Men Study (MrOS). Bone mineral densities (BMD) at total hip, femoral neck, and trochanter were measured by Hologic densitometer (QDR 4500) at baseline and year 4.

Results

Out of 3,494 eligible subjects with complete data, 1,166 and 433 subjects reported use of ACE inhibitors and ARBs, respectively. When compared with nonusers, continuous use of ACE inhibitors was associated with a small (0.004 g/cm2) but significant increase in the average rate of BMD loss at total hip and trochanter over 4 years after adjustment for confounders. Use of ARB was not significantly associated with bone loss.

Conclusion

Use of ACE inhibitors but not ARB may marginally increase bone loss in older men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. So WY, Ma RC, Ozaki R et al (2006) Angiotensin-converting enzyme (ACE) inhibition in type 2, diabetic patients—interaction with ACE insertion/deletion polymorphism. Kidney Int 69(8):1438–1443

    PubMed  CAS  Google Scholar 

  2. Brenner BM, Cooper ME, de Zeeuw D et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345(12):861–869

    Article  PubMed  CAS  Google Scholar 

  3. Hatton R, Stimpel M, Chambers TJ (1997) Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J Endocrinol 152(1):5–10

    Article  PubMed  CAS  Google Scholar 

  4. Hiruma Y, Inoue A, Hirose S et al (1997) Angiotensin II stimulates the proliferation of osteoblast-rich populations of cells from rat calvariae. Biochem Biophys Res Commun 230(1):176–178

    Article  PubMed  CAS  Google Scholar 

  5. Lynn H, Kwok T, Wong SY et al (2006) Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone 38:584–588

    Article  PubMed  CAS  Google Scholar 

  6. Rejnmark L, Vestergaard P, Mosekilde L (2006) Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens 24(3):581–589

    Article  PubMed  CAS  Google Scholar 

  7. Pérez-Castrillón JL, Silva J, Justo I et al (2003) Effect of quinapril, quinapril-hydrochlorothiazide, and enalapril on the bone mass of hypertensive subjects: relationship with angiotensin converting enzyme polymorphisms. Am J Hypertens 16(6):453–459

    Article  PubMed  Google Scholar 

  8. Orwoll E, Black JB, Barrett-Connor E et al (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—a large observational study of the determinants of fracture in older men. Contemp Clin Trials 26(5):569–585

    Article  PubMed  Google Scholar 

  9. Blank JB, Cawthon PM, Carrion-Petersen ML et al (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26(5):557–568

    Article  PubMed  Google Scholar 

  10. Washburn RA, Smith KW, Jette AM, Janney CA (1993) The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 46:153–162

    Article  PubMed  CAS  Google Scholar 

  11. Woo J, Lynn H, Wong SY, Hong A, Tang YN, Lau WY, Lau E, Orwoll E, Kwok TC (2006) Correlates for a low ankle–brachial index in elderly Chinese. Atherosclerosis 186(2):360–366

    Article  PubMed  CAS  Google Scholar 

  12. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

    Google Scholar 

  13. D'Agostino RB Jr (1998) Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17:2265–2281

    Article  PubMed  Google Scholar 

  14. Bolland MJ, Ames RW, Horne AM et al (2007) The effect of treatment with a thiazide diuretic for 4 years on bone density in normal postmenopausal women. Osteoporos Int 18(4):479–486

    Article  PubMed  CAS  Google Scholar 

  15. Uzzan B, Cohen R, Nicolas P et al (2007) Effects of statins on bone mineral density: a meta-analysis of clinical studies. Bone 40(6):1581–1587

    Article  PubMed  CAS  Google Scholar 

  16. Rejnmark L, Vestergaard P, Heickendorff L et al (2006) Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res 21(1):163–170

    Article  PubMed  CAS  Google Scholar 

  17. Jamal SA, Cummings SR, Hawker GA (2004) Isosorbide mononitrate increases bone formation and decreases bone resorption in postmenopausal women: a randomized trial. J Bone Miner Res 19(9):1512–1517

    Article  PubMed  CAS  Google Scholar 

  18. Pasco JA, Henry MJ, Sanders KM et al (2004) Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 19(1):19–24

    Article  PubMed  CAS  Google Scholar 

  19. Wong SYS, Kwok T, Lynn H, Griffith JF, Leung J, Tang YYN, Leung PC (2005) Bone mineral density and the risk of peripheral vascular disease in men and women: results from the Mr. and Ms Os, Hong Kong. Osteoporos Int 16:1933–1938

    Article  PubMed  CAS  Google Scholar 

  20. Ishani A, Paudel M, Taylor BC, Barrett-Connor E, Jamal S, Canales M, Steffes M, Fink HA, Orwoll E, Cummings SR, Ensrud KE, Osteoporotic Fractures in Men (MrOS) Study Group (2008) Renal function and rate of hip bone loss in older men: the Osteoporotic Fractures in Men Study. Osteoporos Int 19(11):1549–1556

    Article  PubMed  CAS  Google Scholar 

  21. Inzerillo AM, Epstein S (2004) Osteoporosis and diabetes mellitus. Rev Endocr Metab Disord 5(3):261–268

    Article  PubMed  Google Scholar 

  22. Gerdhem P, Isaksson A, Akesson K et al (2005) Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 16(12):1506–1512

    Article  PubMed  CAS  Google Scholar 

  23. Murphy CE, Rodgers PT (2007) Effects of thiazolidinediones on bone loss and fracture. Ann Pharmacother 41(12):2014–2018

    Article  PubMed  CAS  Google Scholar 

  24. Masunari N, Fujiwara S, Nakata Y et al (2008) Effect of angiotensin converting enzyme inhibitor and benzodiazepine intake on bone loss in older Japanese. Hiroshima J Med Sci 57(1):17–25

    PubMed  Google Scholar 

  25. Shimizu H, Nakagami H, Osako MK et al (2008) Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J 22(7):2465–2475

    Article  PubMed  CAS  Google Scholar 

  26. Shimizu H, Nakagami H, Osako MK, Nakagami F, Kunugiza Y, Tomita T, Yoshikawa H, Rakugi H, Ogihara T, Morishita R (2009) Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens Res 32(9):786–790

    Article  PubMed  CAS  Google Scholar 

  27. Woo J, Leung SS, Ho SC et al (1998) Dietary intake and practices in the Hong Kong Chinese population. J Epidemiol Community Health 52(10):631–637

    Article  PubMed  CAS  Google Scholar 

  28. Chan JC, Cheung CK, Cockram CS et al (1994) Atrial natriuretic peptide and renin-angiotensin-aldosterone system in non-insulin-dependent diabetes mellitus. J Hum Hypertens 8(6):451–456

    PubMed  CAS  Google Scholar 

  29. Azizi M, Chatellier G, Guyene TT et al (1995) Additive effects of combined angiotensin-converting enzyme inhibition and angiotensin II antagonism on blood pressure and renin release in sodium-depleted normotensives. Circulation 92(4):825–834

    Article  PubMed  CAS  Google Scholar 

  30. Koshida H, Takeda R, Miyamori I (1998) Lisinopril decreases plasma free testosterone in male hypertensive patients and increases sex hormone binding globulin in female hypertensive patients. Hypertens Res 21(4):279–282

    Article  PubMed  CAS  Google Scholar 

  31. Kwok T, Ohlsson C, Vandenput L, Tang N, Zhang YF, Tomlinson B, Leung PC (2010) ACE inhibitor use was associated with lower serum dehydroepiandrosterone concentrations in older men. Clin Chim Acta 411(15–16):1122–1125

    Article  PubMed  CAS  Google Scholar 

  32. Izu Y, Mizoguchi F, Kawamata A et al (2008) Angiotensin II type 2 receptor blockade increases bone mass. J Biol Chem 284(8):4857–4864

    Article  PubMed  Google Scholar 

  33. Asaba Y, Ito M, Fumoto T et al (2008) Activation of renin–angiotensin system induces osteoporosis independently of hypertension. J Bone Miner Res 24(2):241–250

    Article  Google Scholar 

  34. Agata J, Ura N, Yoshida H et al (2006) Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. Hypertens Res 29(11):865–874

    Article  PubMed  CAS  Google Scholar 

  35. Bandow K, Nishikawa Y, Ohnishi T, Kakimoto K, Soejima K, Iwabuchi S, Kuroe K, Matsuguchi T (2007) Low-intensity pulsed ultrasound (LIPUS) induces RANKL, MCP-1, and MIP-1beta expression in osteoblasts through the angiotensin II type 1 receptor. J Cell Physiol 211(2):392–398

    Article  PubMed  CAS  Google Scholar 

  36. Zhang Y, Yeung B, Qin L, Kwok T (2009) The effect of angiotensin II type I receptor blocker (ARB) on bone loss in orchidectomized male hypertensive and normotensive rats. 36th European symposium on calcified tissues. Vienna, May 2009, p. 512

  37. Musini VM, Fortin PM, Bassett K, Wright JM (2008) Blood pressure lowering efficacy of renin inhibitors for primary hypertension. Cochrane Database Syst Rev (4):CD007066

Download references

Acknowledgments

The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provided support: the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the National Institute on Aging, the National Center for Research Resources, and NIH Roadmap for Medical Research under the following grant numbers U01 AR45580, U01 AR45614, U01 AR45632, U01 AR45647, U01 AR45654, U01 AR45583, U01 AG18197, U01-AG027810, and UL1 RR024140.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to T. Kwok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, T., Leung, J., Zhang, Y.F. et al. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men?. Osteoporos Int 23, 2159–2167 (2012). https://doi.org/10.1007/s00198-011-1831-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1831-7

Keywords

Navigation