Skip to main content

Advertisement

Log in

Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To prospectively evaluate the performance of virtual non-calcium (VNC) dual-energy CT (DECT) images for the demonstration of trauma-related abnormal marrow attenuation in collapsed and non-collapsed vertebral compression fractures (VCF) with MRI as a reference standard.

Materials and methods

Twenty patients presenting with non-tumoral VCF were consecutively and prospectively included in this IRB-approved study, and underwent MRI and DECT of the spine. MR examination served as a reference standard. Two independent readers visually evaluated all vertebrae for abnormal marrow attenuation (“CT edema”) on VNC DECT images; specificity, sensitivity, predictive values, intra and inter-observer agreements were calculated. A last reader performed a quantitative evaluation of CT numbers; cut-off values were calculated using ROC analysis.

Results

In the visual analysis, VNC DECT images had an overall sensitivity of 84 %, specificity of 97 %, and accuracy of 95 %, intra- and inter-observer agreements ranged from k = 0.74 to k = 0.90. CT numbers were significantly different between vertebrae with edema on MR and those without (p < 0.0001). Cut-off values provided sensitivity of 85 % (77 %) and specificity of 82 % (74 %) for “CT edema” on thoracic (lumbar) vertebrae.

Conclusions

VNC DECT images allowed an accurate demonstration of trauma-related abnormal attenuation in VCF, revealing the acute nature of the fracture, on both visual and quantitative evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cook DJ, Guyatt GH, Adachi JD, Clifton J, Griffith LE, Epstein RS, et al. Quality of life issues in women with vertebral fractures due to osteoporosis. Arthritis Rheum. 1993;36(6):750–6.

    Article  CAS  PubMed  Google Scholar 

  2. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353(9156):878–82.

    Article  CAS  PubMed  Google Scholar 

  3. Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V. Conservative management of patients with an osteoporotic vertebral fracture: a review of the literature. J Bone Joint Surg Br Vol. 2012;94(2):152–7.

    Article  CAS  Google Scholar 

  4. Body JJ, Bergmann P, Boonen S, Boutsen Y, Bruyere O, Devogelaer JP, et al. Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club. Osteoporos Int J Established Result Cooperation Eur Found Osteoporos Natl Osteoporos Found USA. 2011;22(11):2769–88.

    Article  Google Scholar 

  5. Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR. Recognition of vertebral fracture in a clinical setting. Osteoporos Int J Established Result Cooperation Eur Found Osteoporos Natl Osteoporos Found USA. 2000;11(7):577–82.

    Article  CAS  Google Scholar 

  6. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ. The prevalence of vertebral deformity in European men and women: the European vertebral osteoporosis study. J Bone Miner Res Off J Am Soc Bone Miner Res. 1996;11(7):1010–8.

    Article  Google Scholar 

  7. Bazzocchi A, Spinnato P, Albisinni U, Battista G, Rossi C, Guglielmi G. A careful evaluation of scout CT lateral radiograph may prevent unreported vertebral fractures. Eur J Radiol. 2012;81(9):2353–7.

    Article  PubMed  Google Scholar 

  8. Kroger H, Reeve J. Diagnosis of osteoporosis in clinical practice. Ann Med. 1998;30(3):278–87.

    Article  CAS  PubMed  Google Scholar 

  9. Francis RM, Aspray TJ, Hide G, Sutcliffe AM, Wilkinson P. Back pain in osteoporotic vertebral fractures. Osteoporos Int J Established Result Cooperation Eur Found Osteoporos Natl Osteoporos Found USA. 2008;19(7):895–903.

    Article  CAS  Google Scholar 

  10. Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17.

    Article  PubMed  Google Scholar 

  11. Ziegler R, Scheidt-Nave C, Leidig-Bruckner G. What is a vertebral fracture? Bone. 1996;18(3 Suppl):169S–77S.

    Article  CAS  PubMed  Google Scholar 

  12. Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol. 2004;183(4):949–58.

    Article  PubMed  Google Scholar 

  13. Williams AL, Al-Busaidi A, Sparrow PJ, Adams JE, Whitehouse RW. Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur J Radiol. 2009;69(1):179–83.

    Article  PubMed  Google Scholar 

  14. Kazawa N. T2WI MRI and MRI-MDCT correlations of the osteoporotic vertebral compressive fractures. Eur J Radiol. 2012;81(7):1630–6.

    Article  PubMed  Google Scholar 

  15. Mandalia V, Henson JH. Traumatic bone bruising–a review article. Eur J Radiol. 2008;67(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  16. Memarsadeghi M, Breitenseher MJ, Schaefer-Prokop C, Weber M, Aldrian S, Gabler C, et al. Occult scaphoid fractures: comparison of multidetector CT and MR imaging–initial experience. Radiology. 2006;240(1):169–76.

    Article  PubMed  Google Scholar 

  17. Carberry GA, Pooler BD, Binkley N, Lauder TB, Bruce RJ, Pickhardt PJ. Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology. 2013;268(1):120–6.

    Article  PubMed  Google Scholar 

  18. Mandalia V, Fogg AJ, Chari R, Murray J, Beale A, Henson JH. Bone bruising of the knee. Clin Radiol. 2005;60(6):627–36.

    Article  CAS  PubMed  Google Scholar 

  19. Boks SS, Vroegindeweij D, Koes BW, Hunink MG, Bierma-Zeinstra SM. Follow-up of occult bone lesions detected at MR imaging: systematic review. Radiology. 2006;238(3):853–62.

    Article  PubMed  Google Scholar 

  20. Guggenberger R, Gnannt R, Hodler J, Krauss B, Wanner GA, Csuka E, et al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle: comparison with MR imaging. Radiology. 2012;264(1):164–73.

    Article  PubMed  Google Scholar 

  21. Pache G, Krauss B, Strohm P, Saueressig U, Blanke P, Bulla S, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions–feasibility study. Radiology. 2010;256(2):617–24.

    Article  PubMed  Google Scholar 

  22. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269:525–33.

    Article  PubMed  Google Scholar 

  23. Baur A, Stabler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology. 2002;225(3):730–5.

    Article  PubMed  Google Scholar 

  24. Qaiyum M, Tyrrell PN, McCall IW, Cassar-Pullicino VN. MRI detection of unsuspected vertebral injury in acute spinal trauma: incidence and significance. Skelet Radiol. 2001;30(6):299–304.

    Article  CAS  Google Scholar 

  25. Baur A, Stabler A, Bruning R, Bartl R, Krodel A, Reiser M, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207(2):349–56.

    CAS  PubMed  Google Scholar 

  26. Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–8.

    Article  PubMed  Google Scholar 

  27. Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology. 2003;226(1):119–24.

    Article  PubMed  Google Scholar 

  28. Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging. 2012;36(1):225–30.

    Article  PubMed  Google Scholar 

  29. Li X, Kuo D, Schafer AL, Porzig A, Link TM, Black D, et al. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging. 2011;33(4):974–9.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Harrop JS, Sharan A, Anderson G, Hillibrand AS, Albert TJ, Flanders A, et al. Failure of standard imaging to detect a cervical fracture in a patient with ankylosing spondylitis. Spine. 2005;30(14):E417–9.

    Article  PubMed  Google Scholar 

  31. Yao L, Lee JK. Occult intraosseous fracture: detection with MR imaging. Radiology. 1988;167(3):749–51.

    CAS  PubMed  Google Scholar 

  32. Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics Rev Publ Radiol Soc North Am. 2003;23(1):179–87.

    Google Scholar 

Download references

Conflict of interest

No conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bierry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierry, G., Venkatasamy, A., Kremer, S. et al. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol 43, 485–492 (2014). https://doi.org/10.1007/s00256-013-1812-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1812-3

Keywords

Navigation