Skip to main content

Advertisement

Log in

Biophysical stimulation of bone and cartilage: state of the art and future perspectives

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Introduction

Biophysical stimulation is a non-invasive therapy used in orthopaedic practice to increase and enhance reparative and anabolic activities of tissue.

Methods

A sistematic web-based search for papers was conducted using the following titles: (1) pulsed electromagnetic field (PEMF), capacitively coupled electrical field (CCEF), low intensity pulsed ultrasound system (LIPUS) and biophysical stimulation; (2) bone cells, bone tissue, fracture, non-union, prosthesis and vertebral fracture; and (3) chondrocyte, synoviocytes, joint chondroprotection, arthroscopy and knee arthroplasty.

Results

Pre-clinical studies have shown that the site of interaction of biophysical stimuli is the cell membrane. Its effect on bone tissue is to increase proliferation, synthesis and release of growth factors. On articular cells, it creates a strong A2A and A3 adenosine-agonist effect inducing an anti-inflammatory and chondroprotective result. In treated animals, it has been shown that the mineralisation rate of newly formed bone is almost doubled, the progression of the osteoarthritic cartilage degeneration is inhibited and quality of cartilage is preserved. Biophysical stimulation has been used in the clinical setting to promote the healing of fractures and non-unions. It has been successfully used on joint pathologies for its beneficial effect on improving function in early OA and after knee surgery to limit the inflammation of periarticular tissues.

Discussion

The pooled result of the studies in this review revealed the efficacy of biophysical stimulation for bone healing and joint chondroprotection based on proven methodological quality.

Conclusion

The orthopaedic community has played a central role in the development and understanding of the importance of the physical stimuli. Biophysical stimulation requires care and precision in use if it is to ensure the success expected of it by physicians and patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou J, Wang JQ, Ge BF et al (2014) Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics 35(1):30–38

    CAS  PubMed  Google Scholar 

  2. Clark CC, Wang W, Brighton CT (2014) Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields. J Orthop Res 32(7):894–903

    CAS  PubMed  Google Scholar 

  3. Brighton CT, Okereke E, Pollack SR, Clark CC (1992) In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle. Clin Orthop Relat Res (285):255–62

  4. De Mattei M, Caruso A, Traina GC et al (1999) Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 20(3):177–182

    PubMed  Google Scholar 

  5. Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK (2004) Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res (418):253–9

  6. Lohmann CH, Schwartz Z, Liu Y et al (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 18(4):637–646

    CAS  PubMed  Google Scholar 

  7. Zhou J, Ming LG, Ge BF et al (2011) Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49(4):753–761

    CAS  PubMed  Google Scholar 

  8. Wang Z, Clark CC, Brighton CT (2006) Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J Bone Joint Surg Am 88(5):1053–1065

    PubMed  Google Scholar 

  9. Hartig M, Joos U, Wiesmann HP (2000) Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur Biophys J 29(7):499–506

    CAS  PubMed  Google Scholar 

  10. Veronesi F, Fini M, Sartori M, Parrilli A, Martini L, Tschon M (2018) Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 77:106–115

  11. Chang W, Chen LT, Sun JS et al (2004) Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25(6):457–465

    PubMed  Google Scholar 

  12. Aaron RK, Boyan BD, Ciombor DM et al (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 419:30–37

    Google Scholar 

  13. Varani K, De Mattei M, Vincenzi F et al (2008) Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthr Cartil 16:292–304

    CAS  PubMed  Google Scholar 

  14. De Mattei M, Varani K, Masieri FF et al (2009) Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthr Cartil 17:252–262

    PubMed  Google Scholar 

  15. Ongaro A, Varani K, Masieri FF et al (2012) Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E2 and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol 227:2461–2469

    CAS  PubMed  Google Scholar 

  16. Vincenzi F, Targa M, Corciulo C et al (2013) Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8(5):e65561. https://doi.org/10.1371/journal.pone.0065561 Print 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Mattei M, Fini M, Setti S et al (2007) Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthr Cartil 15(2):163–168

    PubMed  Google Scholar 

  18. Ongaro A, Pellati A, Masieri FF et al (2011) Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 32:543–551

    CAS  PubMed  Google Scholar 

  19. De Mattei M, Pellati A, Pasello M et al (2004) Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthr Cartil 12(10):793–800

    PubMed  Google Scholar 

  20. De Mattei M, Pasello M, Pellati A et al (2003) Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res 44:154–159

    PubMed  Google Scholar 

  21. Ongaro A, Pellati A, Setti S et al (2015) Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med 9(12):E229–E238

    CAS  PubMed  Google Scholar 

  22. Bassett CA, Pawluk RJ, Pilla AA (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184:575–577

    CAS  PubMed  Google Scholar 

  23. De Haas WG, Lazarovici MA, Morrison DM (1979) The effect of low frequency magnetic fields on the healing of the osteotomized rabbit radius. Clin Orthop Relat Res 145:245–251

    Google Scholar 

  24. Canè V, Botti P, Soana S (1993) Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect. J Orthop Res 11:664–670

    PubMed  Google Scholar 

  25. Midura RJ, Ibiwoye MO, Powell KA et al (2005) Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res 23:1035–1046

    PubMed  Google Scholar 

  26. Brighton CT, Hozack WJ, Brager MD et al (1985) Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields. J Orthop Res 3:331–340

    CAS  PubMed  Google Scholar 

  27. Rijal KP, Kashimoto O, Sakurai M (1994) Effect of capacitively coupled electric fields on an experimental model of delayed union of fracture. J Orthop Res 12:262–267

    CAS  PubMed  Google Scholar 

  28. Duarte LR (1983) The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 101:153–159

    CAS  PubMed  Google Scholar 

  29. Pilla AA, Mont MA, Nasser PR et al (1990) Noninvasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma 4:246–253

    CAS  PubMed  Google Scholar 

  30. Fini M, Torricelli P, Giavaresi G et al (2008) Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother 62(10):709–715

    PubMed  Google Scholar 

  31. Benazzo F, Cadossi M, Cavani F et al (2008) Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res 26(5):631–642

    PubMed  Google Scholar 

  32. Veronesi F, Cadossi M, Giavaresi G et al (2015) Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord 16:233

    PubMed  PubMed Central  Google Scholar 

  33. Borsalino G, Bagnacani M, Bettati E et al (1988) Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin Orthop Relat Res 237:256–263

    Google Scholar 

  34. Mammi GI, Rocchi R, Cadossi R et al (1993) The electrical stimulation of tibial osteotomies. Double-blind study. Clin Orthop Relat Res 288:246–253

    Google Scholar 

  35. Capanna R, Donati D, Masetti C et al (1994) Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection. A double blind study. Clin Orthop Relat Res 30:213–221

    Google Scholar 

  36. Hinsenkamp M, Burny F, Donkerwolcke M et al (1984) Electromagnetic stimulation of fresh fractures treated with Hoffmann external fixation. Orthopedics 7:411–416

    CAS  PubMed  Google Scholar 

  37. Fontanesi G, Traina GC, Giancecchi F et al (1986) La lenta evoluzione del processo riparativo di una frattura puo’ essere prevenuta? GIOT XII(3):389–404

  38. Faldini C, Cadossi M, Luciani D et al (2010) Electromagnetic bone growth stimulation in patients with femoral neck fractures treated with screws: prospective randomized double-blind study. Current Orthopaedic Practice 21(3):282–7

  39. Benazzo F, Mosconi M, Beccarisi G et al (1995) Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res 310:145–149

    Google Scholar 

  40. Heckman JD, Ryaby JP, McCabe J et al (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 76(1):26–34

    CAS  PubMed  Google Scholar 

  41. Kristiansen TK, Ryaby JP, McCabe J et al (1997) Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am 79(7):961–973

    CAS  PubMed  Google Scholar 

  42. Mayr E, Rudzki MM, Rudzki M et al (2000) Does low intensity, pulsed ultrasound speed healing of scaphoid fractures? Handchir Mikrochir Plast Chir 32(2):115–122

    CAS  PubMed  Google Scholar 

  43. Leung KS, Lee WS, Tsui HF et al (2004 Mar) Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 30(3):389–395

    PubMed  Google Scholar 

  44. Simonis RB, Parnell EJ, Ray PS et al (2003) Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury 34(5):357–362

    CAS  PubMed  Google Scholar 

  45. Traina GC, Fontanesi G, Costa P et al (1991) Effect of electromagnetic stimulation on patients suffering from nonunion. A retrospective study with a control group. J Bioelectricity 10:101–117

    Google Scholar 

  46. Rispoli FP, Corolla FM, Mussner R (1988) The use of low frequency pulsing electromagnetic fields in patients with painful hip prosthesis. J Bioelectricity 7:181

    Google Scholar 

  47. Kennedy WF, Roberts CG, Zuege RC et al (1993) Use of pulsed electromagnetic fields in treatment of loosened cemented hip prostheses. A double-blind trial. Clin Orthop 286:198–205

    Google Scholar 

  48. Dallari D, Fini M, Giavaresi G et al (2009) Effects of pulsed electromagnetic stimulation on patients undergoing hip revision prostheses: a randomized prospective double-blind study. Bioelectromagnetics 30(6):423–430

    PubMed  Google Scholar 

  49. Mooney V (1990) A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 15(7):708–712

    CAS  PubMed  Google Scholar 

  50. Linovitz RJ, Pathria M, Bernhardt M et al (2002) Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine (Phila Pa 1976) 27(13):1383–1389 discussion 1389

    Google Scholar 

  51. Goodwin CB, Brighton CT, Guyer RD et al (1999) A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24(13):1349–1356

    CAS  PubMed  Google Scholar 

  52. Rossini M, Viapiana O, Gatti D et al (2010) Capacitively coupled electric field for pain relief in patients with vertebral fractures and chronic pain. Clin Orthop Relat Res 468(3):735–740

    PubMed  Google Scholar 

  53. Massari L (2011) Algorithm for employing physical forces in metabolic bone diseases. Aging Clin Exp Res 23(Suppl. to No. 2):52–53

  54. Piazzolla A, Solarino G, Bizzoca D et al (2015) Capacitive coupling electric fields in the treatment of vertebral compression fractures. J Biol Regul Homeost Agents 29(3):637–646

    CAS  PubMed  Google Scholar 

  55. Santori FS, Vitullo A, Montemurro G (1999) Necrosi asettica della testa del femore: associazione tra intervento di svuotamento e innesti autoplastici e CEMP. In: Traina GC, Pipino F, Massari L, Molfetta L, Cadossi R (eds) Modulazione biofisica della osteogenesi mediante campi elettromagnetici pulsati, vol II. Walter Berti Editore, Lugo di Romagna (Ravenna), pp 93–102

    Google Scholar 

  56. Massari L, Fini M, Cadossi R et al (2006) Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Joint Surg Am 88(Suppl 3):56–60

    PubMed  Google Scholar 

  57. Cebrián JL, Milano GL, Alberto F et al (2014) Role of electromagnetic stimulation in the treatment of osteonecrosis of the femoral head in early stages. J Biomed Sci Eng 7:252–257

    Google Scholar 

  58. Zorzi C, Dall’Oca C, Cadossi R et al (2007) Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: prospective, randomized and double-blind study. Knee Surg Sports Traumatol Arthrosc 15(7):830–834

    CAS  PubMed  Google Scholar 

  59. Benazzo F, Zanon G, Pederzini L et al (2008) Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: prospective, randomized and double blind study. Knee Surg Sports Traumatol Arthrosc 16(6):595–601

    PubMed  PubMed Central  Google Scholar 

  60. Cadossi M, Buda RE, Ramponi L et al (2014) Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: a randomized controlled study. Foot Ankle Int 35(10):981–987

    PubMed  Google Scholar 

  61. Collarile M, Sambri A, Lullini G et al (2018) Biophysical stimulation improves clinical results of matrix-assisted autologous chondrocyte implantation in the treatment of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 26(4):1223–1229

    PubMed  Google Scholar 

  62. Moretti B, Notarnicola A, Moretti L et al (2012) I-ONE therapy in patients undergoing total knee arthroplasty: a prospective, randomized and controlled study. BMC Musculoskelet Disord 13(1):88

    PubMed  PubMed Central  Google Scholar 

  63. Adravanti P, Nicoletti S, Setti S et al (2014) Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: a randomised controlled trial. Int Orthop 38(2):397–403

    PubMed  Google Scholar 

  64. Gobbi A, Lad D, Petrera M et al (2014) Symptomatic early osteoarthritis of the knee treated with pulsed electromagnetic fields: two-year follow-up. Cartilage 5(2):76–83

    Google Scholar 

  65. Iammarrone Servodio C, Cadossi M, Sambri A et al (2016) Is there a role of pulsed electromagnetic fields in management of patellofemoral pain syndrome? Randomized controlled study at one year follow-up. Bioelectromagnetics 37(2):81–88

    Google Scholar 

  66. Marcheggiani Muccioli GM, Grassi A, Setti S et al (2013) Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: pulsed electromagnetic fields therapy. Eur J Radiol 82(3):530–537

    CAS  PubMed  Google Scholar 

  67. de Girolamo L, Viganò M, Galliera E et al (2015) In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field. Knee Surg Sports Traumatol Arthrosc 23(11):3443–3453

    PubMed  Google Scholar 

  68. Marmotti A, Peretti MP, Mattia S et al (2018) Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair—an in vitro study. Stem Cells Int. Research Article ID 9048237, https://doi.org/10.1155/2018/9048237

  69. Capone F, Dileone M, Profice P et al (2009) Does exposure to extremely low frequency magnetic fields produce functional changes in human brain? J Neural Transm 116(3):257–265

    CAS  PubMed  Google Scholar 

  70. Capone F, Liberti M, Apollonio F et al (2017) An open-label, one-arm, dose-escalation study to evaluate safety and tolerability of extremely low frequency magnetic fields in acute ischemic stroke. Sci Rep 7(1):12145

    PubMed  PubMed Central  Google Scholar 

  71. Yuan J, Xin F, Jiang W (2018) Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell Physiol Biochem 46(4):1581–1594

    CAS  PubMed  Google Scholar 

  72. Huang AJ, Gemperli MP, Bergthold L et al (2004) Health plans’ coverage determinations for technology-based interventions: the case of electrical bone growth stimulation. Am J Manag Care 10(12):957–962

    PubMed  Google Scholar 

  73. Busse JW, Morton E, Lacchetti C et al (2008) Current management of tibial shaft fractures: a survey of 450 Canadian orthopedic trauma surgeons. Acta Orthop 79(5):689–694

    PubMed  Google Scholar 

  74. Iwasa K, Reddi AH (2018) Pulsed electromagnetic fields and tissue engineering of the joints. Tissue Eng Part B Rev 24(2):144–154

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Massari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massari, L., Benazzo, F., Falez, F. et al. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. International Orthopaedics (SICOT) 43, 539–551 (2019). https://doi.org/10.1007/s00264-018-4274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-018-4274-3

Keywords

Navigation