Skip to main content
Log in

Reactive oxygen species and inflammatory mediators enhance muscle spindles mechanosensitivity in rats

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We tested the hypothesis that reactive oxygen species (ROS) and inflammatory mediators affect transduction properties of muscle spindles. In rats, muscle spindles response to high-frequency vibration (HFV) was recorded before and after (1) injection of hydrogen peroxide (H2O2) in control rats and animals pre-treated with diclofenac (anti-inflammatory substance), (2) injection of bradykinin and (3) fatigue induced by muscle stimulation (MS) in control rats and rats receiving diclofenac, superoxide dismutase (SOD) or H2O2. Muscular oxidative stress and inflammation induced by H2O2 or MS were assessed by measurements of isoprostanes and IL-6 levels. In control rats, H2O2, bradykinin and MS significantly enhanced the HFV response. Pre-treatment with SOD abolished the post-MS-enhanced HFV response whereas diclofenac lowered the peak HFV response to MS and H2O2. H2O2 injection and MS elicited significant and similar increases in isoprostanes and IL-6. We report a direct modulation of muscle spindles mechanosensitivity by ROS and inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blais C Jr, Adam A, Massicotte D, Péronnet F (1999) Increase in blood bradykinin concentration after eccentric weight-training exercise in men. J Appl Physiol 87:1197–1201

    PubMed  CAS  Google Scholar 

  2. Brerro-Saby C, Delliaux S, Steinberg JG, Jammes Y (2008) Fatigue-induced changes in tonic vibration response (TVR) in humans: relationships between electromyographic and biochemical events. Muscle Nerve (in press)

  3. Carew TJ, Ghez C (1985) Muscles and muscle receptors. In: Kandel R, Schwartz JH (eds) Principles of neural science. Elsevier, New York, pp 12–13

    Google Scholar 

  4. Darques JL, Decherchi P, Jammes Y (1998) Mechanisms of fatigue-induced activation of group IV muscle afferents: the roles played by lactic acid and inflammatory mediators. Neurosci Lett 257:109–112

    Article  PubMed  CAS  Google Scholar 

  5. Darques JL, Jammes Y (1997) Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues. Brain Res 750:147–154

    Article  PubMed  CAS  Google Scholar 

  6. Decherchi P, Darques JL, Jammes Y (1998) Modifications of afferent activities from tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically-induced fatigue. J Peripher Nerv Syst 3:267–276

    PubMed  CAS  Google Scholar 

  7. Djupsjöbacka M, Johansson H, Bergenheim M, Wenngren BI (1995) Influences on the gamma-muscle spindle system from muscle afferents stimulated by increased intramuscular concentrations of bradykinin and 5-HT. Neurosci Res 22:325–333

    Article  PubMed  Google Scholar 

  8. Dousset E, Decherchi P, Grelot L, Jammes Y (2001) Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle. Am J Respir Crit Care Med 164:1476–1480

    PubMed  CAS  Google Scholar 

  9. Favero TG, Zable AC, Abramson JJ (1995) Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem 270:25557–25563

    Article  PubMed  CAS  Google Scholar 

  10. Fukami Y (1986) Studies of capsule and capsular space of cat muscle spindles. J Physiol 376:281–297

    PubMed  CAS  Google Scholar 

  11. Hagbarth KE, Bongiovanni LG, Nordin M (1995) Reduced servo-control of fatigued human finger extensor and flexor muscles. J Physiol 485:865–872

    PubMed  CAS  Google Scholar 

  12. Hayes SG, Kindig AE, Kaufman MP (2006) Cyclooxygenase blockade attenuates responses of group III and IV muscle afferents to dynamic exercise in cats. Am J Physiol Heart Circ Physiol 290:H2239–H2246

    Article  PubMed  CAS  Google Scholar 

  13. Hidalgo C, Donoso P, Carrasco MA (2005) The ryanodine receptors Ca2 + release channels: cellular redox sensors? IUBMB Life 57:315–322

    Article  PubMed  CAS  Google Scholar 

  14. Hnik P, Payne R (1965) Increased sensory outflow following muscle activity. J Physiol 181:36P–36P

    Google Scholar 

  15. Jammes Y, Balzamo E (1992) Changes in afferent and efferent phrenic activity during electrically-induced diaphragm fatigue. J Appl Physiol 73:894–902

    PubMed  CAS  Google Scholar 

  16. Jammes Y, Trousse D, Delpierre S (2005) Identification and properties of parietal pleural afferents. J. Physiol 567:641–650

    Article  PubMed  CAS  Google Scholar 

  17. Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweir JL (1991) Study of the mechanism of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 266:2354–2361

    PubMed  CAS  Google Scholar 

  18. Juel C (2006) Muscle fatigue and reactive oxygen species. J Physiol 576:279–288

    Article  CAS  Google Scholar 

  19. Könczöl F, Lorinczy D, Belagyi J (1998) Effect of oxygen free radicals on myosin in muscle fibres. FEBS Lett 427:341–344

    Article  PubMed  Google Scholar 

  20. Lagier-Tessonnier F, Balzamo E, Jammes Y (1993) Comparative effects of ischemia and acute hypoxemia on muscle afferents from tibialis anterior in cats. Muscle Nerve 16:135–141

    Article  PubMed  CAS  Google Scholar 

  21. Ljubisovljenic M, Jovanovi K, Anastasijevi R (1992) Changes in discharge rate of fusimotor neurones provoked by fatiguing contractions of cat triceps surae muscles. J Physiol 445:499–513

    Google Scholar 

  22. Longhurst JC, Tjen-A-Looi SC, Fu LW (2001) Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes. Ann NY Acad Sci 940:74–95

    Article  PubMed  CAS  Google Scholar 

  23. Matalon S, Hardiman KM, Jain L, Eaton DC, Kotlikoff M, Eu JP, Sun J, Meissner G, Stamler JS (2003) Regulation of ion channel structure and function by reactive oxygen–nitrogen species. Am J Physiol Lung Cell Mol Physiol 285:L1184–L1189

    PubMed  CAS  Google Scholar 

  24. McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S, Gong X (2006) N-acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol 576:279–288

    Article  PubMed  CAS  Google Scholar 

  25. Nelson DL, Hutton RS (1985) Dynamic and static stretch responses in muscle spindle receptors in fatigued muscle. Med Sci Sports Exerc 17:445–450

    Article  PubMed  Google Scholar 

  26. Nordin M, Hagbarth KE (1996) Effects of preceding movements and contractions on the tonic vibration reflex of human finger extensor muscles. Acta Physiol Scand 156:435–440

    Article  PubMed  CAS  Google Scholar 

  27. Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80:1055–1081

    PubMed  CAS  Google Scholar 

  28. Posterino GS, Cellini MA, Lamb GD (2003) Effects of oxidation and cytosolic redox conditions on excitation–contraction coupling in rat skeletal muscle. J Physiol 547:807–823

    Article  PubMed  CAS  Google Scholar 

  29. Rotto DM, Hill JM, Schultz HD, Kaufman MP (1990) Cyclooxygenase blockade attenuates responses of group IV muscle afferents to static contraction. Am J Physiol 259:H745–H750

    PubMed  CAS  Google Scholar 

  30. Schultz HD, Ustinova EE (1996) Cardiac vagal afferent stimulation by free radicals during ischaemia and reperfusion. Clin Exp Pharmacol Physiol 23:700–708

    Article  PubMed  CAS  Google Scholar 

  31. Snitsarev V, Whiteis CA, Chapleau MW, Abboud FM (2007) Mechano- and chemosensitivity of rat nodose neurones—selective excitatory effects of prostacyclin. J Physiol 582:177–194

    Article  PubMed  CAS  Google Scholar 

  32. Steinberg JG, Faucher M, Guillot C, Kipson N, Badier M, Jammes Y (2004) Depressed fatigue-induced oxidative stress in chronic hypoxemic humans and rats. Respir Physiol Neurobiol 141:179–189

    Article  PubMed  CAS  Google Scholar 

  33. Tjen-A-Looi SC, Fu LW, Longhurst JC (2002) Xanthine oxidase, but not neutrophils, contributes to activation of cardiac sympathetic afferents during myocardial ischaemia in cats. J Physiol 543:327–336

    Article  PubMed  CAS  Google Scholar 

  34. Ustinova EE, Schultz HD (1994) Activation of cardiac vagal afferents by oxygen-derived free radicals in rats. Circ Res 74:895–903

    PubMed  CAS  Google Scholar 

  35. Zhang LQ, Rymer WZ (2001) Reflex and intrinsic changes induced by fatigue of human elbow extensor muscles. J Neurophysiol 86:1086–1094

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Jammes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delliaux, S., Brerro-Saby, C., Steinberg, J.G. et al. Reactive oxygen species and inflammatory mediators enhance muscle spindles mechanosensitivity in rats. Pflugers Arch - Eur J Physiol 457, 877–884 (2009). https://doi.org/10.1007/s00424-008-0554-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0554-x

Keywords

Navigation