Skip to main content
Log in

The importance of the endplate for interbody cages in the lumbar spine

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Intervertebral cages in the lumbar spine represent an advancement in spinal fusion to relieve low back pain. Different implant designs require different endplate preparations, but the question of to what extent preservation of the bony endplate might be necessary remains unanswered. In this study the effects of endplate properties and their distribution on stresses in a lumbar functional spinal unit were investigated using finite-element analyses. Three-dimensional finite-element models of L2-L3 with and without a cage were used. An anterior approach for a monobloc, box-shaped cage was modelled. The results showed that inserting a cage increased the maximum von Mises stress and changed the load distribution in the adjacent structures. A harder endplate led to increased concentration of the stress peaks and high stresses were propagated further into the vertebral body, into areas that would usually not experience such stresses. This may cause structural changes and provide an explanation for the damage occurring to the underlying bone, as well as for the subsequent subsidence of the cage. Stress distributions were similar for the two endplate preparation techniques of complete endplate preservation and partial endplate removal from the centre. It can be concluded that cages should be designed such that they rely on the strong peripheral part of the endplate for support and offer a large volume for the graft. Furthermore, the adjacent vertebrae should be assessed to ensure that they show sufficient density in the peripheral regions to tolerate the altered load transfer following cage insertion until an adequate adaptation to the new loading situation is produced by the remodelling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Agazzi S, Reverdin A, May D (1999) Posterior lumbar interbody fusion with cages: an independant review of 71 cases. J Neurosurg 91:186–192

    CAS  PubMed  Google Scholar 

  2. Antonacci MD, Hanson DS, Leblanc A, Heggeness MH (1997) Regional variations in vertebral bone density and trabecular architecture are influenced by osteoarthritic change and osteoporosis. Spine 22:2393–2401

    Article  CAS  PubMed  Google Scholar 

  3. Banse X, Devogelaer J, Munting E, Delloye C, Cornu O, Grynpas M (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28:563–571

    Article  CAS  PubMed  Google Scholar 

  4. Boden S, Sumner D (1995) Biologic factors affecting spinal fusion and bone regeneration. Spine 20:102S–112S

    Google Scholar 

  5. Brantigan JW, Steffee AD, Lewis M, Quinn L, Persenaire J (2000) Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine 25:1437–1446

    Article  PubMed  Google Scholar 

  6. Closkey RF, Parsons JR, Lee CK, Blacksin MF, Zimmerman MC (1993) Mechanics of interbody spinal fusion. Analysis of critical bone graft area. Spine 18:1011–1015

    CAS  PubMed  Google Scholar 

  7. Diedrich O, Perlick L, Schmitt O, Kraft CN (2001) Radiographic characteristics on conventional radiographs after posterior lumbar interbody fusion: comparative study between radiotranslucent and radiopaque cages. J Spinal Disord 14:522–532

    Google Scholar 

  8. Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26:218–225

    Article  CAS  PubMed  Google Scholar 

  9. Frei H, Oxland TR, Rathonyi GC, Nolte LP (2001) The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Spine 26:2080–2089

    Article  CAS  PubMed  Google Scholar 

  10. Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG (1993) A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine 18:1531–1541

    CAS  PubMed  Google Scholar 

  11. Grant J, Oxland T, Dvorak M (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896

    CAS  PubMed  Google Scholar 

  12. Hollowell J, Vollmer D, Wilson C, Pintar F, Yoganandan N (1996) Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine 21:1032–1036

  13. Holmes A, Hukins D, Freemont A (1993) End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine 18:128–135

    CAS  PubMed  Google Scholar 

  14. Ikeuchi M, Yamamoto H, Shibata T, Otani M (2001) Mechanical augmentation of the vertebral body by calcium phosphate cement injection. J Orthop Sci 6:39–45

    Article  CAS  PubMed  Google Scholar 

  15. Jost B, Cripton P, Lund T, et al (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7:132–141

    CAS  PubMed  Google Scholar 

  16. Kettler A, Wilke H-J, Dietl R, Krammer M, Lumenta C, Claes L (2000) Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 92:87–92

    CAS  PubMed  Google Scholar 

  17. Kothari M, Keaveny TM, Lin JC, Newitt DC, Genant HK, Majumdar S (1998) Impact of spatial resolution on the prediction of trabecular architecture parameters. Bone 22:437–443

    Article  CAS  PubMed  Google Scholar 

  18. Kuslich S, Ulstrom C, Griffith S, Ahern J, Dowdle J (1998) The Bagby and Kuslich method of lumbar interbody fusion: history, techniques, and 2-year follow-up results of a united states prospective, multicenter trial. Spine 23:1267–1279

    CAS  PubMed  Google Scholar 

  19. Kuslich S, Danielson G, Dowdle J, et al (2000) Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine 25:2656–2662

    Article  CAS  PubMed  Google Scholar 

  20. Lu M, Hutton WC (1996) Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine 21:2570–2579

    Article  CAS  PubMed  Google Scholar 

  21. McAfee P (1999) Interbody fusion cages in reconstructive operations on the spine; current concepts review. J Bone Joint Surg Am 81:859–880

    PubMed  Google Scholar 

  22. Millard J, Augat P, Link T, et al (1998) Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif Tissue Int 63:482–489

    Article  CAS  PubMed  Google Scholar 

  23. Mosekilde L (1993) Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 53:S121–S125; (S126 discussion)

    PubMed  Google Scholar 

  24. Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–85

    CAS  PubMed  Google Scholar 

  25. Mulholland R (2000) Cages: outcome and complications. Eur Spine J 9:S110–S113

    PubMed  Google Scholar 

  26. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328

    Article  CAS  PubMed  Google Scholar 

  27. Overaker D, Langrana NA, Cuitino A (1999) Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Biomech Eng 121:542–550

    CAS  PubMed  Google Scholar 

  28. Pavlov P, Spruit M, Havinfa M, Anderson P, van Limbeek J, Jacobs W (2000) Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts. Eur Spine J 9:224–229

    PubMed  Google Scholar 

  29. Polikeit A, Ferguson S, Nolte LP, Orr T (2002) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J DOI 10.1007/s00586-002-0505-8

    Google Scholar 

  30. Ray C (1997) Threaded titanium cages for lumbar interbody fusions. Spine 22:667–680

    CAS  PubMed  Google Scholar 

  31. Roberts S, McCall I, Menage J, Haddaway M, Eisenstein S (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6:385–389

    Google Scholar 

  32. Shirazi-Adl SA, Shrivastava SC, Ahmed AM (1984) Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine 9:120–134

    CAS  PubMed  Google Scholar 

  33. Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927

    CAS  PubMed  Google Scholar 

  34. Silva MJ, Keaveny TM, Hayes WC (1997) Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22:140–150

    Article  CAS  PubMed  Google Scholar 

  35. Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine 25:1077–1084

    Article  PubMed  Google Scholar 

  36. Steffen T, Tsantrizos A, Fruth I, Aebi M (2000) Cages: designs and concepts. Eur Spine J 9 [Suppl 1]:S89–S94

  37. van Dieën J, Kingma I, Meijer R, Hänsel L, Huiskes R (2001) Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. Clin Biomech 16:S135–S142

    Article  Google Scholar 

  38. Wenger KH, Wilke H-J, Pross A, Claes LE (1997) Mechanical and ultrastructural properties of the osseous vertebral endplate. Annual report of the Institut für Unfallchirurgische Forschung und Biomechanik, Ulm

  39. Wenger K, Pross A, Wilke H-J, Gossee F, Vahldiek M, Claes LE (1999) Bone mineral density of the vertebral endplate: an in vitro comparison of normals, degeneratives and osteoporotics. 26th Annual Meeting, ISSLS, Kona, Hawaii

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Qingmao Hu for assistance with the segmentation of the CT slices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Polikeit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polikeit, A., Ferguson, S.J., Nolte, L.P. et al. The importance of the endplate for interbody cages in the lumbar spine. Eur Spine J 12, 556–561 (2003). https://doi.org/10.1007/s00586-003-0556-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-003-0556-5

Keywords

Navigation