Skip to main content

Advertisement

Log in

Image-guided spine surgery: state of the art and future directions

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Navigation technology is a widely available tool in spine surgery and has become a part of clinical routine in many centers. The issue of where and when navigation technology should be used is still an issue of debate. It is the aim of this study to give an overview on the current knowledge concerning the technical capabilities of image-guided approaches and to discuss possible future directions of research and implementation of this technique. Based on a Medline search total of 1,462 publications published until October 2008 were retrieved. The abstracts were scanned manually for relevance to the topics of navigated spine surgery in the cervical spine, the thoracic spine, the lumbar spine, as well as ventral spine surgery, radiation exposure, tumor surgery and cost-effectivity in navigated spine surgery. Papers not contributing to these subjects were deleted resulting in 276 papers that were included in the analysis. Image-guided approaches have been investigated and partially implemented into clinical routine in virtually any field of spine surgery. However, the data available is mostly limited to small clinical series, case reports or retrospective studies. Only two RCTs and one metaanalysis have been retrieved. Concerning the most popular application of image-guided approaches, pedicle screw insertion, the evidence of clinical benefit in the most critical areas, e.g. the thoracic spine, is still lacking. In many other areas of spine surgery, e.g. ventral spine surgery or tumor surgery, image-guided approaches are still in an experimental stage. The technical development of image-guided techniques has reached a high level as the accuracies that can be achieved technically meet the anatomical demands. However, there is evidence that the interaction between the surgeon (‘human factor’) and the navigation system is a source of inaccuracy. It is concluded that more effort needs to be spend to understand this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta FL Jr, Quinones-Hinojosa A, Gadkary CA, Schmidt MH, Chin CT, Ames CP, Rosenberg WS, Weinstein P (2005) Frameless stereotactic image-guided C1–C2 transarticular screw fixation for atlantoaxial instability: review of 20 patients. J Spinal Disord Tech 18:385–391. doi:10.1097/01.bsd.0000169443.44202.67

    PubMed  Google Scholar 

  2. Acosta FL Jr, Thompson TL, Campbell S, Weinstein PR, Ames CP (2005) Use of intraoperative isocentric C-arm 3D fluoroscopy for sextant percutaneous pedicle screw placement: case report and review of the literature. Spine J 5:339–343. doi:10.1016/j.spinee.2004.09.012

    PubMed  Google Scholar 

  3. Arand M, Hartwig E, Hebold D, Kinzl L, Gebhard F (2001) Precision analysis of navigation-assisted implanted thoracic and lumbar pedicled screws. A prospective clinical study. Unfallchirurg 104:1076–1081. doi:10.1007/s001130170023

    CAS  PubMed  Google Scholar 

  4. Arand M, Hartwig E, Kinzl L, Gebhard F (2001) Spinal navigation in cervical fractures—a preliminary clinical study on Judet-osteosynthesis of the axis. Comput Aided Surg 6:170–175

    CAS  PubMed  Google Scholar 

  5. Arand M, Hartwig E, Kinzl L, Gebhard F (2002) Spinal navigation in tumor surgery of the thoracic spine: first clinical results. Clin Orthop Relat Res 211–218. doi:10.1097/00003086-200206000-00026

  6. Arand M, Schempf M, Hebold D, Teller S, Kinzl L, Gebhard F (2003) Precision of navigation-assisted surgery of the thoracic and lumbar spine. Unfallchirurg 106:899–906

    CAS  PubMed  Google Scholar 

  7. Assaker R, Cinquin P, Cotten A, Lejeune JP (2001) Image-guided endoscopic spine surgery: Part I. A feasibility study. Spine 26:1705–1710. doi:10.1097/00007632-200108010-00015

    CAS  PubMed  Google Scholar 

  8. Assaker R, Reyns N, Pertruzon B, Lejeune JP (2001) Image-guided endoscopic spine surgery: Part II: clinical applications. Spine 26:1711–1718. doi:10.1097/00007632-200108010-00016

    CAS  PubMed  Google Scholar 

  9. Austin MS, Vaccaro AR, Brislin B, Nachwalter R, Hilibrand AS, Albert TJ (2002) Image-guided spine surgery: a cadaver study comparing conventional open laminoforaminotomy and two image-guided techniques for pedicle screw placement in posterolateral fusion and nonfusion models. Spine 27:2503–2508. doi:10.1097/00007632-200211150-00015

    PubMed  Google Scholar 

  10. Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260. doi:7643[pii]

    CAS  PubMed  Google Scholar 

  11. Battaglia TC, Tannoury T, Crowl AC, Chan DP, Anderson DG (2005) A cadaveric study comparing standard fluoroscopy with fluoroscopy-based computer navigation for screw fixation of the odontoid. J Surg Orthop Adv 14:175–180

    PubMed  Google Scholar 

  12. Bloch O, Holly LT, Park J, Obasi C, Kim K, Johnson JP (2001) Effect of frameless stereotaxy on the accuracy of C1–2 transarticular screw placement. J Neurosurg 95:74–79

    CAS  PubMed  Google Scholar 

  13. Bolger C, Wigfield C (2000) Image-guided surgery: applications to the cervical and thoracic spine and a review of the first 120 procedures. J Neurosurg 92:175–180

    CAS  PubMed  Google Scholar 

  14. Borm W, Konig RW, Albrecht A, Richter HP, Kast E (2004) Percutaneous transarticular atlantoaxial screw fixation using a cannulated screw system and image guidance. Minim Invasive Neurosurg 47:111–114. doi:10.1055/s-2004-818449

    CAS  PubMed  Google Scholar 

  15. Carl AL, Khanuja HS, Gatto CA, Matsumoto M, vom Lehn J, Schenck J, Rohling K, Lorensen W, Vosburgh K (2000) In vivo pedicle screw placement: image-guided virtual vision. J Spinal Disord 13:225–229. doi:10.1097/00002517-200006000-00005

    CAS  PubMed  Google Scholar 

  16. Carl AL, Khanuja HS, Sachs BL, Gatto CA, vom Lehn J, Vosburgh K, Schenck J, Lorensen W, Rohling K, Disler D (1997) In vitro simulation. Early results of stereotaxy for pedicle screw placement. Spine 22:1160–1164. doi:10.1097/00007632-199705150-00018

    CAS  PubMed  Google Scholar 

  17. Chappell ET, Pare L, Dolich MO, Lekawa ME, Salepour M (2005) Frameless stereotaxy to facilitate anterolateral thoracolumbar surgery: technique. Neurosurgery 56:110–116. doi:10.1227/01.NEU.0000144313.91933.44 (discussion 110–116)

    PubMed  Google Scholar 

  18. Chibbaro S, Benvenuti L, Carnesecchi S, Marsella M, Serino D, Gagliardi R (2005) The use of virtual fluoroscopy in managing acute type II odontoid fracture with anterior single-screw fixation. A safe, effective, elegant and fast form of treatment. Acta Neurochir (Wien) 147:735–739. doi:10.1007/s00701-005-0522-6 (discussion 739)

    CAS  Google Scholar 

  19. Citak M, Board TN, Sun Y, Look V, Krettek C, Hufner T, Kendoff D (2007) Reference marker stability in computer aided orthopedic surgery: a biomechanical study in artificial bone and cadavers. Technol Health Care 15:407–414

    CAS  PubMed  Google Scholar 

  20. Cleary K, Anderson J, Brazaitis M, Devey G, DiGioia A, Freedman M, Gronemeyer D, Lathan C, Lemke H, Long D, Mun SK, Taylor R (2000) Final report of the technical requirements for image-guided spine procedures Workshop, April 17–20, 1999, Ellicott City, Maryland, USA. Comput Aided Surg 5:180–215

    CAS  PubMed  Google Scholar 

  21. di Pellegrino G, Frassinetti F (2000) Direct evidence from parietal extinction of enhancement of visual attention near a visible hand. Curr Biol 10:1475–1477. doi:S0960-9822(00)00809-5[pii]

    CAS  PubMed  Google Scholar 

  22. Ebmeier K, Giest K, Kalff R (2003) Intraoperative computerized tomography for improved accuracy of spinal navigation in pedicle screw placement of the thoracic spine. Acta Neurochir (Wien) 85:105–113

    CAS  Google Scholar 

  23. Foley KT, Simon DA, Rampersaud YR (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine 26:347–351. doi:10.1097/00007632-200102150-00009

    CAS  PubMed  Google Scholar 

  24. Fritsch E, Duchow J, Seil R, Grunwald I, Reith W (2002) Accuracy of fluoroscopic navigation of pedicle screws. CT-based evaluation of bone screw placement. Orthopade 31:385–391. doi:10.1007/s00132-001-0280-y

    CAS  PubMed  Google Scholar 

  25. Fu TS, Chen LH, Wong CB, Lai PL, Tsai TT, Niu CC, Chen WJ (2004) Computer-assisted fluoroscopic navigation of pedicle screw insertion: an in vivo feasibility study. Acta Orthop Scand 75:730–735. doi:10.1080/00016470410004102

    Article  PubMed  Google Scholar 

  26. Gebhard F, Kinzl L, Hartwig E, Arand M (2003) Navigation of tumors and metastases in the area of the thoraco-lumbar spine. Unfallchirurg 106:949–955

    CAS  PubMed  Google Scholar 

  27. Gebhard F, Kraus M, Schneider E, Arand M, Kinzl L, Hebecker A, Batz L (2003) Radiation dosage in orthopedics—a comparison of computer-assisted procedures. Unfallchirurg 106:492–497. doi:10.1007/s00113-003-0606-9

    CAS  PubMed  Google Scholar 

  28. Gebhard FT, Kraus MD, Schneider E, Liener UC, Kinzl L, Arand M (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine 31:2024–2027 (discussion 202829)

    PubMed  Google Scholar 

  29. Geerling J, Gosling T, Gosling A, Ortega G, Kendoff D, Citak M, Krettek C, Hufner T (2008) Navigated pedicle screw placement: experimental comparison between CT- and 3D fluoroscopy-based techniques. Comput Aided Surg 13:157–166

    PubMed  Google Scholar 

  30. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine 15:11–14. doi:10.1097/00007632-199001000-00004

    CAS  PubMed  Google Scholar 

  31. Glossop ND, Hu RW, Randle JA (1996) Computer-aided pedicle screw placement using frameless stereotaxis. Spine 21:2026–2034. doi:10.1097/00007632-199609010-00021

    CAS  PubMed  Google Scholar 

  32. Graziano MS, Cooke DF, Taylor CS (2000) Coding the location of the arm by sight. Science 290:1782–1786. doi:9014[pii]

    CAS  PubMed  Google Scholar 

  33. Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054–1057. doi:10.1126/science.7973661

    CAS  PubMed  Google Scholar 

  34. Grutzner PA, Beutler T, Wendl K, von Recum J, Wentzensen A, Nolte LP (2004) Intraoperative three-dimensional navigation for pedicle screw placement. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen 75:967–975

    CAS  PubMed  Google Scholar 

  35. Hart RA, Hansen BL, Shea M, Hsu F, Anderson GJ (2005) Pedicle screw placement in the thoracic spine: a comparison of image-guided and manual techniques in cadavers. Spine 30:E326–E331. doi:10.1097/01.brs.0000166621.98354.1d

    PubMed  Google Scholar 

  36. Holly LT, Bloch O, Johnson JP (2006) Evaluation of registration techniques for spinal image guidance. J Neurosurg 4:323–328

    Google Scholar 

  37. Holly LT, Foley KT (2003) Intraoperative spinal navigation. Spine 28:S54–S61. doi:10.1097/00007632-200308011-00010

    PubMed  Google Scholar 

  38. Holly LT, Foley KT (2006) Percutaneous placement of posterior cervical screws using three-dimensional fluoroscopy. Spine 31:536–540. doi:10.1097/01.brs.0000201297.83920.a1 (discussion 541)

    PubMed  Google Scholar 

  39. Hott JS, Deshmukh VR, Klopfenstein JD, Sonntag VK, Dickman CA, Spetzler RF, Papadopoulos SM (2004) Intraoperative Iso-C C-arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 54:1131–1136. doi:10.1227/01.NEU.0000119755.71141.13 (discussion 1136–1137)

    PubMed  Google Scholar 

  40. Hott JS, Papadopoulos SM, Theodore N, Dickman CA, Sonntag VK (2004) Intraoperative Iso-C C-arm navigation in cervical spinal surgery: review of the first 52 cases. Spine 29:2856–2860. doi:10.1097/01.brs.0000147742.20637.49

    PubMed  Google Scholar 

  41. Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport 7:2325–2330

    CAS  PubMed  Google Scholar 

  42. Isenberg J, Andermahr J, Hahn U (2004) Multidirectional atlantoaxial instability of an os odontoideum in an adult. Unfallchirurg 107:1089–1092. doi:10.1007/s00113-004-0788-9

    CAS  PubMed  Google Scholar 

  43. Ito H, Neo M, Yoshida M, Fujibayashi S, Yoshitomi H, Nakamura T (2007) Efficacy of computer-assisted pedicle screw insertion for cervical instability in RA patients. Rheumatol Int 27:567–574. doi:10.1007/s00296-006-0256-7

    CAS  PubMed  Google Scholar 

  44. Jackson SR, Newport R, Husain M, Harvey M, Hindle JV (2000) Reaching movements may reveal the distorted topography of spatial representations after neglect. Neuropsychologia 38:500–507. doi:S0028-3932(99)00083-4[pii]

    CAS  PubMed  Google Scholar 

  45. Johnson JP, Stokes JK, Oskouian RJ, Choi WW, King WA (2005) Image-guided thoracoscopic spinal surgery: a merging of 2 technologies. Spine 30:E572–E578. doi:10.1097/01.brs.0000180475.20002.15

    PubMed  Google Scholar 

  46. Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K (1999) Accurate pedicle screw insertion under the control of a computer-assisted image guiding system: laboratory test and clinical study. J Orthop Sci 4:197–206. doi:10.1007/s007760050094

    CAS  PubMed  Google Scholar 

  47. Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K (2000) Cervical pedicle screw insertion: assessment of safety and accuracy with computer-assisted image guidance. J Spinal Disord 13:218–224. doi:10.1097/00002517-200006000-00004

    CAS  PubMed  Google Scholar 

  48. Kelleher MO, McEvoy L, Nagaria J, Kamel M, Bolger C (2006) Image-guided transarticular atlanto-axial screw fixation. Int J Med Robot 2:154–160. doi:10.1002/rcs.92

    CAS  PubMed  Google Scholar 

  49. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32:E111–E120. doi:10.1097/01.brs.0000254048.79024.8b

    PubMed  Google Scholar 

  50. Kotani Y, Abumi K, Ito M, Minami A (2003) Improved accuracy of computer-assisted cervical pedicle screw insertion. J Neurosurg 99:257–263

    PubMed  Google Scholar 

  51. Kothe R, Matthias Strauss J, Deuretzbacher G, Hemmi T, Lorenzen M, Wiesner L (2001) Computer navigation of parapedicular screw fixation in the thoracic spine: a cadaver study. Spine 26:E496–E501. doi:10.1097/00007632-200111010-00019

    CAS  PubMed  Google Scholar 

  52. Ladavas E, di Pellegrino G, Farne A, Zeloni G (1998) Neuropsychological evidence of an integrated visuotactile representation of peripersonal space in humans. J Cogn Neurosci 10:581–589. doi:10.1162/089892998562988

    CAS  PubMed  Google Scholar 

  53. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240. doi:10.1007/s005860000146

    CAS  PubMed  Google Scholar 

  54. Lekovic GP, Potts EA, Karahalios DG, Hall G (2007) A comparison of two techniques in image-guided thoracic pedicle screw placement: a retrospective study of 37 patients and 277 pedicle screws. J Neurosurg 7:393–398

    Google Scholar 

  55. Lim MR, Girardi FP, Yoon SC, Huang RC, Cammisa FP Jr (2005) Accuracy of computerized frameless stereotactic image-guided pedicle screw placement into previously fused lumbar spines. Spine 30:1793–1798. doi:10.1097/01.brs.0000171905.38459.b7

    PubMed  Google Scholar 

  56. Linhardt O, Perlick L, Luring C, Stern U, Plitz W, Grifka J (2005) Extracorporeal single dose and radiographic dosage in image-controlled and fluoroscopic navigated pedicle screw implantation. Z Orthop Ihre Grenzgeb 143:175–179. doi:10.1055/s-2005-836489

    CAS  PubMed  Google Scholar 

  57. Little JB, Taveras JM (eds) (1992) Radiology: diagnosis, imaging, intervention. JB Lippincott, Philadelphia

    Google Scholar 

  58. Liu YJ, Tian W, Liu B, Li Q, Hu L, Li ZY, Yuan Q, Xing YG, Wang YQ, Sun YZ (2005) Accuracy of CT-based navigation of pedicle screws implantation in the cervical spine compared with X-ray fluoroscopy technique. Zhonghua Wai Ke Za Zhi 43:1328–1330 Chin J Surg

    PubMed  Google Scholar 

  59. Mac Millan M (2005) Computer-guided percutaneous interbody fixation and fusion of the L5-S1 disc: a 2-year prospective study. J spinal Disord Tech 18 Suppl:S90–95

    Google Scholar 

  60. Mahadewa T, Mizuno J, Inoue T, Nakagawa H (2004) C7 fracture treated with a pedicle screw system under navigation guidance. Singapore Med J 45:489–493

    CAS  PubMed  Google Scholar 

  61. Maier B, Zheng G, Ploss C, Zhang X, Welle K, Nolte LP, Marzi I (2007) A CT-free, intra-operative planning and navigation system for minimally invasive anterior spinal surgery—an accuracy study. Comput Aided Surg 12:233–241. doi:10.1080/10929080701552894

    CAS  PubMed  Google Scholar 

  62. Marshman LA, Friesem T, Rampersaud YR, Le Huec JC, Krishna M, Reddy GR (2007) Significantly improved lumbar arthroplasty placement using image guidance: technical note. Spine 32:2027–2030. doi:10.1097/BRS.0b013e3181316292

    PubMed  Google Scholar 

  63. McAfee PC, Cunningham B, Holsapple G, Adams K, Blumenthal S, Guyer RD, Dmietriev A, Maxwell JH, Regan JJ, Isaza J (2005) A prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part II: evaluation of radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes. Spine 30:1576–1583, discussion E1388–1590

    PubMed  Google Scholar 

  64. Merloz P, Tonetti J, Pittet L, Coulomb M, Lavallee S, Sautot P (1998) Pedicle screw placement using image guided techniques. Clin Orthop Relat Res 39:48. doi:10.1097/00003086-199809000-00006

    Google Scholar 

  65. Merloz P, Tonetti J, Pittet L, Coulomb M, Lavallee S, Troccaz J, Cinquin P, Sautot P (1998) Computer-assisted spine surgery. Comput Aided Surg 3:297–305. doi:10.3109/10929089809148150

    CAS  PubMed  Google Scholar 

  66. Merloz P, Troccaz J, Vouaillat H, Vasile C, Tonetti J, Eid A, Plaweski S (2007) Fluoroscopy-based navigation system in spine surgery. Proc Inst Mech Eng 221:813–820. doi:10.1243/09544119JEIM268

    CAS  Google Scholar 

  67. Mirza SK, Wiggins GC, Ct Kuntz, York JE, Bellabarba C, Knonodi MA, Chapman JR, Shaffrey CI (2003) Accuracy of thoracic vertebral body screw placement using standard fluoroscopy, fluoroscopic image guidance, and computed tomographic image guidance: a cadaver study. Spine 28:402–413. doi:10.1097/00007632-200302150-00018

    PubMed  Google Scholar 

  68. Moore T, McLain RF (2005) Image-guided surgery in resection of benign cervicothoracic spinal tumors: a report of two cases. Spine J 5:109–114. doi:10.1016/j.spinee.2004.06.020

    PubMed  Google Scholar 

  69. Newport R, Hindle JV, Jackson SR (2001) Links between vision and somatosensation. Vision can improve the felt position of the unseen hand. Curr Biol 11:975–980. doi:S0960-9822(01)00266-4[pii]

    CAS  PubMed  Google Scholar 

  70. Nolte LP, Visarius H, Arm E, Langlotz F, Schwarzenbach O, Zamorano L (1995) Computer-aided fixation of spinal implants. J Image Guided Surg 1:88–9369

    CAS  Google Scholar 

  71. Nolte LP, Zamorano L, Visarius H, Berlemann U, Langlotz F, Arm E, Schwarzenbach O (1995) Clinical evaluation of a system for precision enhancement in spine surgery. Clin Biomech (Bristol, Avon) 10:293–303. doi:10.1016/0268-0033(95)00004-5

    Google Scholar 

  72. Nottmeier EW, Crosby TL (2007) Timing of paired points and surface matching registration in three-dimensional (3D) image-guided spinal surgery. J Spinal Disord Tech 20:268–270

    PubMed  Google Scholar 

  73. Ohmori K, Kawaguchi Y, Kanamori M, Ishihara H, Takagi H, Kimura T (2001) Image-guided anterior thoracolumbar corpectomy: a report of three cases. Spine 26:1197–1201. doi:10.1097/00007632-200105150-00024

    CAS  PubMed  Google Scholar 

  74. Ohnsorge JA, Siebert CH, Schkommodau E, Mahnken AH, Prescher A, Weisskopf M (2005) Minimally-invasive computer-assisted fluoroscopic navigation for kyphoplasty. Z Orthop Ihre Grenzgeb 143:195–203. doi:10.1055/s-2005-836514

    CAS  PubMed  Google Scholar 

  75. Paramore CG, Dickman CA, Sonntag VK (1996) The anatomical suitability of the C1-2 complex for transarticular screw fixation. J Neurosurg 85:221–224

    CAS  PubMed  Google Scholar 

  76. Petilon J, Hardenbrook M, Sukovich W (2008) The effect of parallax on intraoperative positioning of the Charite artificial disc. J Spinal Disord Tech 21:422–429. doi:10.1097/BSD.0b013e31815708a6

    PubMed  Google Scholar 

  77. Quinones-Hinojosa A, Robert Kolen E, Jun P, Rosenberg WS, Weinstein PR (2006) Accuracy over space and time of computer-assisted fluoroscopic navigation in the lumbar spine in vivo. J Spinal Disord Tech 19:109–113. doi:10.1097/01.bsd.0000168513.68975.8a

    PubMed  Google Scholar 

  78. Rajasekaran S, Kamath V, Shetty AP (2008) Intraoperative Iso-C three-dimensional navigation in excision of spinal osteoid osteomas. Spine 33:E25–E29. doi:10.1097/BRS.0b013e31815e6308

    CAS  PubMed  Google Scholar 

  79. Rajasekaran S, Vidyadhara S, Ramesh P, Shetty AP (2007) Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine 32:E56–E64. doi:10.1097/01.brs.0000252094.64857.ab

    CAS  PubMed  Google Scholar 

  80. Rajasekaran S, Vidyadhara S, Shetty AP (2007) Intra-operative Iso-C3D navigation for pedicle screw instrumentation of hangman’s fracture: a case report. J Orthop Surg (Hong Kong) 15:73–77

    CAS  Google Scholar 

  81. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25:2637–2645. doi:10.1097/00007632-200010150-00016

    CAS  PubMed  Google Scholar 

  82. Rampersaud YR, Pik JH, Salonen D, Farooq S (2005) Clinical accuracy of fluoroscopic computer-assisted pedicle screw fixation: a CT analysis. Spine 30:E183–E190. doi:10.1097/01.brs.0000157490.65706.38

    PubMed  Google Scholar 

  83. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26:352–359. doi:10.1097/00007632-200102150-00010

    CAS  PubMed  Google Scholar 

  84. Reichle E, Sellenschloh K, Morlock M, Eggers C (2002) Placement of pedicle screws using different navigation systems. A laboratory trial with 12 spinal preparations. Orthopade 31:368–371. doi:10.1007/s00132-001-0277-6

    CAS  PubMed  Google Scholar 

  85. Reinhold M, Bach C, Audige L, Bale R, Attal R, Blauth M, Magerl F (2008) Comparison of two novel fluoroscopy-based stereotactic methods for cervical pedicle screw placement and review of the literature. Eur Spine J

  86. Richter M, Amiot LP, Puhl W (2002) Computer navigation in dorsal instrumentation of the cervical spine—an in vitro study. Orthopade 31:372–377. doi:10.1007/s00132-001-0278-5

    CAS  PubMed  Google Scholar 

  87. Ruf M, Wagner R, Merk H, Harms J (2006) Preoperative planning and computer assisted surgery in ankylosing spondylitis. Z Orthop Ihre Grenzgeb 144:52–57. doi:10.1055/s-2006-921484

    CAS  PubMed  Google Scholar 

  88. Rushworth MF, Nixon PD, Passingham RE (1997) Parietal cortex and movement. I. Movement selection and reaching. Exp Brain Res Experimentelle Hirnforschung 117:292–310

    CAS  Google Scholar 

  89. Sagi HC, Manos R, Benz R, Ordway NR, Connolly PJ (2003) Electromagnetic field-based image-guided spine surgery part one: results of a cadaveric study evaluating lumbar pedicle screw placement. Spine 28:2013–2018. doi:10.1097/01.BRS.0000087851.51547.00

    CAS  PubMed  Google Scholar 

  90. Sakai Y, Matsuyama Y, Yoshihara H, Nakamura H, Nakashima S, Ishiguro N (2006) Simultaneous registration with ct-fluoro matching for spinal navigation surgery. A case report. Nagoya J Med Sci 68:45–52

    PubMed  Google Scholar 

  91. Sasso RC, Best NM, Potts EA (2005) Percutaneous computer-assisted translaminar facet screw: an initial human cadaveric study. Spine J 5:515–519. doi:10.1016/j.spinee.2005.03.016

    PubMed  Google Scholar 

  92. Sasso RC, Garrido BJ (2007) Computer-assisted spinal navigation versus serial radiography and operative time for posterior spinal fusion at L5-S1. J Spinal Disord Tech 20:118–122. doi:10.1097/01.bsd.0000211263.13250.b1

    PubMed  Google Scholar 

  93. Schaeren S, Roth J, Dick W (2002) Effective in vivo radiation dose with image reconstruction controlled pedicle instrumentation vs. CT-based navigation. Orthopade 31:392–396. doi:10.1007/s00132-001-0281-x

    CAS  Google Scholar 

  94. Schnake KJ, Konig B, Berth U, Schroeder RJ, Kandziora F, Stockle U, Raschke M, Haas NP (2004) Accuracy of CT-based navitation of pedicle screws in the thoracic spine compared with conventional technique. Unfallchirurg 107:104–112. doi:10.1007/s00113-003-0720-8

    CAS  PubMed  Google Scholar 

  95. Seichi A, Takeshita K, Kawaguchi H, Kawamura N, Higashikawa A, Nakamura K (2005) Image-guided surgery for thoracic ossification of the posterior longitudinal ligament. Technical note. J Neurosurg 3:165–168

    Google Scholar 

  96. Seichi A, Takeshita K, Nakajima S, Akune T, Kawaguchi H, Nakamura K (2005) Revision cervical spine surgery using transarticular or pedicle screws under a computer-assisted image-guidance system. J Orthop Sci 10:385–390. doi:10.1007/s00776-005-0902-z

    PubMed  Google Scholar 

  97. Siewerdsen JH, Moseley DJ, Burch S, Bisland SK, Bogaards A, Wilson BC, Jaffray DA (2005) Volume CT with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery. Med Phys 32:241–254. doi:10.1118/1.1836331

    CAS  PubMed  Google Scholar 

  98. Slomczykowski M, Roberto M, Schneeberger P, Ozdoba C, Vock P (1999) Radiation dose for pedicle screw insertion. Fluoroscopic method versus computer-assisted surgery. Spine 24:975–982. doi:10.1097/00007632-199905150-00009 (discussion 983)

    CAS  PubMed  Google Scholar 

  99. Smith HE, Vaccaro AR, Yuan PS, Papadopoulos S, Sasso R (2006) The use of computerized image guidance in lumbar disk arthroplasty. J Spinal Disord Tech 19:22–27. doi:10.1097/01.bsd.0000187977.76926.85

    PubMed  Google Scholar 

  100. Theocharopoulos N, Perisinakis K, Damilakis J, Papadokostakis G, Hadjipavlou A, Gourtsoyiannis N (2003) Occupational exposure from common fluoroscopic projections used in orthopaedic surgery. J Bone Joint Surg Am 85-A:1698–1703

    PubMed  Google Scholar 

  101. Thoranaghatte R, Zheng G, Nolte LP (2005) Novel method for registering an endoscope in an operative setup. Conf Proc IEEE Eng Med Biol Soc 4:4349–4352

    PubMed  Google Scholar 

  102. Thoranaghatte RU, Zheng G, Langlotz F, Nolte LP (2005) Endoscope-based hybrid navigation system for minimally invasive ventral spine surgeries. Comput Aided Surg 10:351–356. doi:10.1080/10929080500389738

    PubMed  Google Scholar 

  103. Vaccaro AR, Yuan PS, Smith HE, Hott J, Sasso R, Papadopoulos S (2005) An evaluation of image-guided technologies in the placement of anterior thoracic vertebral body screws in spinal trauma: a cadaver study. J Spinal Cord Med 28:308–313

    PubMed  Google Scholar 

  104. Van Royen BJ, Baayen JC, Pijpers R, Noske DP, Schakenraad D, Wuisman PI (2005) Osteoid osteoma of the spine: a novel technique using combined computer-assisted and gamma probe-guided high-speed intralesional drill excision. Spine 30:369–373. doi:10.1097/01.brs.0000152531.49095.34

    PubMed  Google Scholar 

  105. Veres R, Bago A, Fedorcsak I (2001) Early experiences with image-guided transoral surgery for the pathologies of the upper cervical spine. Spine 26:1385–1388. doi:10.1097/00007632-200106150-00024

    CAS  PubMed  Google Scholar 

  106. Vougioukas VI, Hubbe U, Schipper J, Spetzger U (2003) Navigated transoral approach to the cranial base and the craniocervical junction: technical note. Neurosurgery 52:247–250. doi:10.1097/00006123-200301000-00034 discussion 251

    PubMed  Google Scholar 

  107. Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S (1988) Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine 13:1012–1018. doi:10.1097/00007632-198809000-00008

    CAS  PubMed  Google Scholar 

  108. Wendl K, von Recum J, Wentzensen A, Grutzner PA (2003) Iso-C(3D0-assisted) navigated implantation of pedicle screws in thoracic lumbar vertebrae. Unfallchirurg 106:907–913

    CAS  PubMed  Google Scholar 

  109. White KK, Oka R, Mahar AT, Lowry A, Garfin SR (2006) Pullout strength of thoracic pedicle screw instrumentation: comparison of the transpedicular and extrapedicular techniques. Spine 31:E355–E358. doi:10.1097/01.brs.0000219394.48091.d6

    PubMed  Google Scholar 

  110. Xu R, Ebraheim NA, Ou Y, Yeasting RA (1998) Anatomic considerations of pedicle screw placement in the thoracic spine. Roy-Camille technique versus open-lamina technique. Spine 23:1065–1068. doi:10.1097/00007632-199805010-00021

    CAS  PubMed  Google Scholar 

  111. Youkilis AS, Quint DJ, McGillicuddy JE, Papadopoulos SM (2001) Stereotactic navigation for placement of pedicle screws in the thoracic spine. Neurosurgery 48:771-778, discussion 778–779

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Tjardes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjardes, T., Shafizadeh, S., Rixen, D. et al. Image-guided spine surgery: state of the art and future directions. Eur Spine J 19, 25–45 (2010). https://doi.org/10.1007/s00586-009-1091-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1091-9

Keywords

Navigation