Skip to main content

Advertisement

Log in

Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The study design is a prospective, case–control. The aim of this study was to develop a reliable measurement technique for the assessment of lumbar spine kinematics using digital video fluoroscopy in a group of patients with low back pain (LBP) and a control group. Lumbar segmental instability (LSI) is one subgroup of nonspecific LBP the diagnosis of which has not been clarified. The diagnosis of LSI has traditionally relied on the use of lateral functional (flexion–extension) radiographs but use of this method has proven unsatisfactory. Fifteen patients with chronic low back pain suspected to have LSI and 15 matched healthy subjects were recruited. Pulsed digital videofluoroscopy was used to investigate kinematics of lumbar motion segments during flexion and extension movements in vivo. Intersegmental linear translation and angular displacement, and pathway of instantaneous center of rotation (PICR) were calculated for each lumbar motion segment. Movement pattern of lumbar spine between two groups and during the full sagittal plane range of motion were analyzed using ANOVA with repeated measures design. Intersegmental linear translation was significantly higher in patients during both flexion and extension movements at L5–S1 segment (p < 0.05). Arc length of PICR was significantly higher in patients for L1–L2 and L5–S1 motion segments during extension movement (p < 0.05). This study determined some kinematic differences between two groups during the full range of lumbar spine. Devices, such as digital videofluoroscopy can assist in identifying better criteria for diagnosis of LSI in otherwise nonspecific low back pain patients in hope of providing more specific treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng Y, Nixon MS, Allen R (2003) Lumbar spine visualisation based on kinematic analysis from videofluoroscopic imaging. Med Eng Phys 25:171–179

    Article  CAS  PubMed  Google Scholar 

  2. Petersen T, Olsen S, Laslett M (2004) Inter-tester reliability of a new diagnostic classification system for patients with non-specific low back pain. Aust J Physiother 50(2):85–94

    PubMed  Google Scholar 

  3. Frymoyer J, Pope M, Wilder D (1990) Segmental instability. In: Weinstein J, Wiesel S (eds) The lumbar spine. WB Saunders, Philadelphia, pp 612–636

    Google Scholar 

  4. Hicks G, Fritz J, Delitto A (2003) Interrater reliability of clinical examination measures for identification of lumbar segmental instability. Arch Phys Med Rehabil 84(12):1858–1864

    Article  PubMed  Google Scholar 

  5. O’sullivan P (2000) Lumbar segmental ‘instability’: clinical presentation and specific stabilizing exercise management. Man Ther 5:2–12

    Article  PubMed  Google Scholar 

  6. Abbott JH, Fritz JM, McCane B, Shultz B, Herbison P, Lyons B, Stefanko G, Walsh RM (2006) Lumbar segmental mobility disorders: comparison of two methods of defining abnormal displacement kinematics in a cohort of patients with non-specific mechanical low back pain. BMC Musculoskelet Disord 7:45

    Article  PubMed  Google Scholar 

  7. Boden S, Wiesel S (1990) Lumbosacral segmental motion in normal individuals. Spine 15:571–575

    Article  CAS  PubMed  Google Scholar 

  8. Dupuis P, Yong-Hing K, Cassidy J (1985) Radiologic diagnosis of degenerative lumbar spinal instability. Spine 10:262–276

    Article  CAS  PubMed  Google Scholar 

  9. Dvorák J, Panjabi MM (1991) Functional radiographic diagnosis of the lumbar spine. Spine 16:562–571

    Article  PubMed  Google Scholar 

  10. Dvorák J, Panjabi MM, Novotny JE, Chang DG, Grob D (1991) Clinical validation of functional flexion-extension roentgenograms of the lumbar spine. Spine 16:943–950

    Article  PubMed  Google Scholar 

  11. Friberg O (1987) Lumbar instability: a dynamic approach by traction-compression radiography. Spine 12:119–129

    Article  CAS  PubMed  Google Scholar 

  12. Hayes M, Howard T, Gruel C, Kopta J (1989) Roentgenographic evaluation of lumbar spine flexion-extension in asymptomatic individuals. Spine 14:327–331

    Article  CAS  PubMed  Google Scholar 

  13. Knutsson F (1944) The instability associated with disc herniation in the lumbar spine. Acta Radiol 25:593–609

    Google Scholar 

  14. Korpi J, Putto E, Poussa M, Heliovaara M (1991) Radiological translatory mobility between lumbar vertebrae in women and men with low back pain. J Man Med 6:121–123

    Google Scholar 

  15. Pitkanen M, Manninen H, Lindgren K, Sihvonen T, Airaksinen O, Soimakallio S (2002) Segmental lumbar spine instability at flexionextension radiography can be predicted by conventional radiography. Clin Radiol 57:632–639

    Article  CAS  PubMed  Google Scholar 

  16. Spratt K, Weinstein J, Lehmann T, Woody J, Sayre H (1993) Efficacy of flexion and extension treatments incorporating braces for low-back pain patients with retrodisplacement, spondylolisthesis, or normal sagittal translation. Spine 18:1839–1849

    Article  CAS  PubMed  Google Scholar 

  17. Tallroth K, Alaranta H, Soukka A (1992) Lumbar mobility in asymptomatic individuals. J Spinal Disord 5:481–484

    Article  CAS  PubMed  Google Scholar 

  18. White A, Panjabi MM (1990) Clinical biomechanics of the spine. JB Lippincott, Philadelphia

    Google Scholar 

  19. Wood K, Popp C, Transfeldt E (1994) Radiographic evaluation of instability in spondylolisthesis. Spine 19:1697–1703

    Article  CAS  PubMed  Google Scholar 

  20. Lee S, Draper E, Hughes S (1997) Instantaneous center of rotation and instability of the cervical spine. A clinical study. Spine 22:641–647

    Article  CAS  PubMed  Google Scholar 

  21. Gertzbein S, Seligman J, Holtby R, Chan K, Kapasouri A (1985) Centrode patterns and segmental instability in degenerative disc disease. Spine 10:257–261

    Article  CAS  PubMed  Google Scholar 

  22. Danielson B, Frennered K, Irstam L (1988) Roentgenologic assessment of spondylolisthesis. I. A study of measurement variations. Acta Radiol 29:345–351

    Article  CAS  PubMed  Google Scholar 

  23. Danielson B, Frennered K, Selvik G (1989) Roentgenologic assessment of spondylolisthesis. II. An evaluation of progression. Acta Radiol 30:65–68

    Article  CAS  PubMed  Google Scholar 

  24. Penning L, Wilmink J, Hv Woerden (1984) Inability to prove instability. A critical appraisal of clinical-radiological flexion-extension studies in lumbar disc degeneration. Diagn Imaging Clin Med 53:182–192

    Google Scholar 

  25. Polly D, Kilkelly F, McHale K (1996) Measurement of lumbar lordosis. Evaluation of intraobserver, interobserver, and technique variability. Spine 21:1530–1535

    Article  PubMed  Google Scholar 

  26. Shaffer W, Spratt K, Weinstein J (1990) Volvo Award in clinical sciences. The consistency and accuracy of roentgenograms for measuring sagittal translation in the lumbar vertebral motion segment. An experimental model. Spine 15:741–750

    Article  CAS  PubMed  Google Scholar 

  27. Teyhen DS, Flynn TW, Childs JD, Kuklo TR, Rosner MK, Polly DW, Abraham LD (2007) Fluoroscopic video to identify aberrant lumbar motion. Spine 32:E220–E229

    Article  PubMed  Google Scholar 

  28. Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5:383–389

    Article  CAS  PubMed  Google Scholar 

  29. Panjabi MM (1992) The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 5:390–396

    Article  CAS  PubMed  Google Scholar 

  30. Auerbach JD, Wills BP, McIntosh TC, Balderston RA (2007) Evaluation of spinal kinematics following lumbar total disc replacement and circumferential fusion using in vivo fluoroscopy. Spine 32:527–536

    Article  PubMed  Google Scholar 

  31. Okawa A, Shinomiya K, Komori H, Muneta T, Arai Y, Nakai O (1998) Dynamic motion study of the whole lumbar spine by videofluoroscopy. Spine 23:1743–1749

    Article  CAS  PubMed  Google Scholar 

  32. Otani K, Okawa A, Shinomiya K, Nakai O (2005) Spondylolisthesis with postural slip reduction shows different motion patterns with video-fluoroscopic analysis. J Orthop Sci 10:152–159

    Article  PubMed  Google Scholar 

  33. Teyhen DS, Flynn TW, Bovik AC, Abraham LD (2005) A new technique for digital fluoroscopic video assessment of sagittal plane lumbar spine motion. Spine 30:E406–E413

    Article  PubMed  Google Scholar 

  34. Wong KW, Leong JC, Chan MK, Luk KD, Lu WW (2004) The flexion-extension profile of lumbar spine in 100 healthy volunteers. Spine 29:1636–1641

    Article  PubMed  Google Scholar 

  35. Wong KW, Luk KD, Leong JC, Wong SF, Wong KK (2006) Continuous dynamic spinal motion analysis. Spine 31:414–419

    Article  PubMed  Google Scholar 

  36. Hicks G, Fritz JM, Delitto A, Macgill S (2005) Preliminary development of clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. Arch Phys Med Rehabil 86:1753–1762

    Article  PubMed  Google Scholar 

  37. Harvey S, Hukins D (1998) Measurement of lumbar spinal flexion-extension kinematics from lateral radiographs: simulation of the effects of out-of-plane movement and errors in reference point placement. Med Eng Phys 20:403–409

    Article  CAS  PubMed  Google Scholar 

  38. Pearcy M (1985) Stereo radiography of lumbar spine motion. Acta Orthop Scand Suppl 212:1–45

    CAS  PubMed  Google Scholar 

  39. Panjabi MM, White A (2001) Biomechanics in the musculoskeletal system. Churchill Livingstone, New York

    Google Scholar 

  40. Keessen W, During J, Beeker T (1984) Recordings of the movement at the intervertebral segment L5–S1: a technique for the determination of the movement in the L5–S1 spinal segment by using three specified postural positions. Spine 9:83–90

    Article  CAS  PubMed  Google Scholar 

  41. Posner I, White A, Edwards W (1982) A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7:374–389

    Article  CAS  PubMed  Google Scholar 

  42. Harada M, Abumi K, Ito M, Kaneda K (2000) Cineradiographic motion analysis of normal lumbar spine during forward and backward flexion. Spine 25:1932–1937

    Article  CAS  PubMed  Google Scholar 

  43. Takayanagi K, Takahashi K, Yamagata M, Moriya H, Kitahara H, Tamaki T (2001) Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine 26:1858–1865

    Article  CAS  PubMed  Google Scholar 

  44. Lee SW, Wong KW, Chan MK, Yeung HM, Chiu JL, Leong JC (2002) Development and validation of a new technique for assessing lumbar spine motion. Spine 27:E215–E220

    Article  PubMed  Google Scholar 

  45. Kanayama M, Abumi K, Kaneda K, Tadano S, Ukai T (1996) Phase lag of the intersegmental motion in flexion–extension of the lumbar and lumbosacral spine: an in vivo study. Spine 21:1416–1422

    Article  CAS  PubMed  Google Scholar 

  46. Cox M, Asselin S, Gracovetsky S, Richards M, Newman N, Karakusevic V, Zhong L, Fogel J (2000) Relationship between functional evaluation measures and self-assessment in nonacute low back pain. Spine 25:1817–1826

    Article  CAS  PubMed  Google Scholar 

  47. Marriott A, Newman N, Gracovetsky S, Richards M, SA S (1999) Improving the evaluation of benign low back pain [Clinical Trial]. Comparative study. Spine 24:952–960

    Article  CAS  PubMed  Google Scholar 

  48. Vet Hd, Heymans M, Dunn K, Pope D, Beek Avd, Macfarland G, Bouter L, Croft P (2002) Episodes of low back pain. Spine 27:2409–2416

    Article  PubMed  Google Scholar 

  49. Waddell G (1987) 1987 Volvo Award in clinical sciences. A new clinical model for the treatment of low-back pain. Spine 12:632–644

    Article  CAS  PubMed  Google Scholar 

  50. Shum G, Crosbie J, Lee R (2007) Movement coordination of the lumbar spine and hip during a picking up activity in low back pain subjects. Eur Spine J 16:749–758

    Article  PubMed  Google Scholar 

  51. Sihvonen T, Lindgren K, Airaksinen O, Manninen H (1997) Movement disturbances of the lumbar spine and abnormal back muscle electromyographic findings in recurrent low back pain. Spine 22:289–295

    Article  CAS  PubMed  Google Scholar 

  52. Grieve G (1982) Lumbar instability. Physiotherapy 68:2–9

    CAS  PubMed  Google Scholar 

  53. Delitto A, RB RW (1995) A treatment based classification approach to low back syndrome: identifying and staging patients for conservative treatment. Physical Ther 75:470–489

    CAS  Google Scholar 

  54. Farfan H, Gracovetsky S (1984) The nature of instability. Spine 9:714–719

    Article  CAS  PubMed  Google Scholar 

  55. Frymoyer J, Selby D (1985) Segmental instability rationale for treatment. Spine 10:280–285

    Article  CAS  PubMed  Google Scholar 

  56. Schneider G, Pearcy M, Bogduk N (2005) Abnormal motion in Spondylolytic Spondylolisthesis. Spine 30:1159–1164

    Article  PubMed  Google Scholar 

  57. Teyhen DS, Flynn TW, Childs JD, Abraham LD (2007) Arthrokinematics in a subgroup of patients likely to benefit from a lumbar stabilization exercise program. Phys Ther 87:313–325

    PubMed  Google Scholar 

  58. Anderson P, Haughton V, Iatridis J, Kang J, Lotz J, Natarajan R, Oegema T, Roughley P, Setton LA, Urban JP, Videman T, Andersson G, Weinstein JN (2004) Disc degeneration: summary. Spine 29:2677–2678

    Article  PubMed  Google Scholar 

  59. Natarajan R, Williams J, Andersson G (2004) Recent advances in analytical modeling of lumbar disc degeneration. Spine 29:2733–2741

    Article  PubMed  Google Scholar 

  60. Natarajan R, Williams J, Andersson G (2006) Modeling changes in intervertebral disc mechanics with degeneration. J Bone Joint Surg Am 88:36–40

    Article  PubMed  Google Scholar 

  61. Natarajan R, Williams J, Lavender S, Anderson G (2008) Relationship between disc injury and manual lifting: a poroelastic finite element model study. J Eng Med 222:195–207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, A., Maroufi, N., Behtash, H. et al. Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy. Eur Spine J 18, 1677–1685 (2009). https://doi.org/10.1007/s00586-009-1147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1147-x

Keywords

Navigation