Skip to main content

Advertisement

Log in

Posterior fixation and fusion of unstable Hangman’s fracture by using intraoperative three-dimensional fluoroscopy-based navigation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to assess the efficacy and accuracy of posterior screw fixation for unstable Hangman’s fracture using intraoperative 3D fluoroscopy-based navigation.

Methods

14 patients with unstable Hangman’s fractures (11 males and 3 females), ranging in age from 21 to 59 years, received posterior fixation assisted by an intraoperative 3D fluoroscopy-based navigation system: 11 Levine–Edwards type II and three type IIA cases. The American Spine Injury Association grade was D in 2 and E in 12 cases.

Results

Operation time was 110 min (range 90–140 min). Hospital stay was 7.6 days (range 5–12 days). All the patients were observed for an average of 28.8 months (range 15–50 months). No screw-related injury to nerve, or vertebral artery was observed intraoperatively. An average of four screws/patient were inserted. Pedicle screws were placed into C2 and C3, and 5 screws were into the lateral mass of C3. Screw placement accuracy was evaluated using postoperative CT, according to the modified classification of Gertzbein and Robbins; one screw was grade 2 in C2, and three screws were grade 2 in the pedicle of C3. No grade 3 misplacement or clinical deficits were noted. C3 lateral mass screws were successfully inserted. Neck pain was relieved in each case. Neurologic status improved from D to E in 2 cases. Solid fusion was demonstrated in all the cases by static and dynamic films during the final follow-up.

Conclusions

This case series demonstrates that intraoperative 3D fluoroscopy-based navigation is a safe, accurate, and effective tool for screw placement in patients with unstable Hangman’s fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schneider RC, Livingston KE, Cave AJ, Hamilton G (1965) “Hangman’s Fracture” of the cervical spine. J Neurosurg 22:141–154. doi:10.3171/jns.1965.22.2.0141

    Article  PubMed  CAS  Google Scholar 

  2. Li XF, Dai LY, Lu H, Chen XD (2006) A systematic review of the management of hangman’s fractures. Eur Spine J 15:257–269. doi:10.1007/s00586-005-0918-2

    Article  PubMed  Google Scholar 

  3. Levine AM, Edwards CC (1985) The management of traumatic spondylolisthesis of the axis. J Bone Joint Surg Am 67:217–226

    PubMed  CAS  Google Scholar 

  4. Yukawa Y, Kato F, Ito K, Horie Y, Hida T, Nakashima H, Machino M (2009) Placement and complications of cervical pedicle screws in 144 cervical trauma patients using pedicle axis view techniques by fluoroscope. Eur Spine J 18:1293–1299. doi:10.1007/s00586-009-1032-7

    Article  PubMed  Google Scholar 

  5. Tjardes T, Shafizadeh S, Rixen D, Paffrath T, Bouillon B, Steinhausen ES, Baethis H (2010) Image-guided spine surgery: state of the art and future directions. Eur Spine J 19:25–45. doi:10.1007/s00586-009-1091-9

    Article  PubMed  Google Scholar 

  6. Rajasekaran S, Vidyadhara S, Shetty AP (2007) Iso-C3D fluoroscopy-based navigation in direct pedicle screw fixation of hangman fracture: a case report. J Spinal Disord Tech 20:616–619. doi:10.1097/BSD.0b013e318074f978

    Article  PubMed  CAS  Google Scholar 

  7. Sugimoto Y, Ito Y, Shimokawa T, Shiozaki Y, Mazaki T (2010) Percutaneous screw fixation for traumatic spondylolisthesis of the axis using iso-C3D fluoroscopy-assisted navigation (case report). Minim Invasive Neurosurg 53:83–85. doi:10.1055/s-0030-1247503

    Article  PubMed  CAS  Google Scholar 

  8. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14

    Article  CAS  Google Scholar 

  9. Mueller CA, Roesseler L, Podlogar M, Kovacs A, Kristof RA (2010) Accuracy and complications of transpedicular C2 screw placement without the use of spinal navigation. Eur Spine J 19:809–814. doi:10.1007/s00586-010-1291-3

    Article  PubMed  Google Scholar 

  10. Effendi B, Roy D, Cornish B, Dussault RG, Laurin CA (1981) Fractures of the ring of the axis. A classification based on the analysis of 131 cases. J Bone Joint Surg Br 63-B:319–327

    PubMed  CAS  Google Scholar 

  11. Ying Z, Wen Y, Xinwei W, Yong T, Hongyu L, Zhu H, Qinggang Z, Weihong Z, Yonggeng C (2008) Anterior cervical discectomy and fusion for unstable traumatic spondylolisthesis of the axis. Spine (Phila Pa 1976) 33:255–258. doi:10.1097/BRS.0b013e31816233d0

    Article  Google Scholar 

  12. Xie N, Khoo LT, Yuan W, Ye XJ, Chen DY, Xiao JR, Ni B (2010) Combined anterior C2–C3 fusion and C2 pedicle screw fixation for the treatment of unstable hangman’s fracture: a contrast to anterior approach only. Spine (Phila Pa 1976). doi:10.1097/BRS.0b013e3181ba3368

  13. Ma W, Xu R, Liu J, Sun S, Zhao L, Hu Y, Jiang W, Liu G, Gu Y (2011) Posterior short-segment fixation and fusion in unstable Hangman’s fractures. Spine (Phila Pa 1976) 36:529–533. doi:10.1097/BRS.0b013e3181d60067

    Article  Google Scholar 

  14. Tuite GF, Papadopoulos SM, Sonntag VK (1992) Caspar plate fixation for the treatment of complex hangman’s fractures. Neurosurgery 30:761–764 (discussion 764–765)

    Article  PubMed  CAS  Google Scholar 

  15. Wilson AJ, Marshall RW, Ewart M (1999) Transoral fusion with internal fixation in a displaced hangman’s fracture. Spine (Phila Pa 1976) 24:295–298

    Article  CAS  Google Scholar 

  16. Muller EJ, Wick M, Muhr G (2000) Traumatic spondylolisthesis of the axis: treatment rationale based on the stability of the different fracture types. Eur Spine J 9:123–128

    Article  PubMed  CAS  Google Scholar 

  17. Bristol R, Henn JS, Dickman CA (2005) Pars screw fixation of a hangman’s fracture: technical case report. Neurosurgery 56:204 (discussion E204)

    Article  Google Scholar 

  18. ElMiligui Y, Koptan W, Emran I (2010) Transpedicular screw fixation for type II Hangman’s fracture: a motion preserving procedure. Eur Spine J 19:1299–1305. doi:10.1007/s00586-010-1401-2

    Article  PubMed  Google Scholar 

  19. Samaha C, Lazennec JY, Laporte C, Saillant G (2000) Hangman’s fracture: the relationship between asymmetry and instability. J Bone Joint Surg Br 82:1046–1052

    Article  PubMed  CAS  Google Scholar 

  20. Verheggen R, Jansen J (1998) Hangman’s fracture: arguments in favor of surgical therapy for type II and III according to Edwards and Levine. Surg Neurol 49:253–261 (pii:S0090-3019(97)00300-5, discussion 261–262)

    Article  PubMed  CAS  Google Scholar 

  21. Duggal N, Chamberlain RH, Perez-Garza LE, Espinoza-Larios A, Sonntag VK, Crawford NR (2007) Hangman’s fracture: a biomechanical comparison of stabilization techniques. Spine (Phila Pa 1976) 32:182–187. doi:10.1097/01.brs.0000251917.83529.0b

    Article  Google Scholar 

  22. Nottmeier EW, Foy AB (2008) Placement of C2 laminar screws using three-dimensional fluoroscopy-based image guidance. Eur Spine J 17:610–615. doi:10.1007/s00586-007-0557-x

    Article  PubMed  Google Scholar 

  23. Richter M, Amiot LP, Neller S, Kluger P, Puhl W (2000) Computer-assisted surgery in posterior instrumentation of the cervical spine: an in vitro feasibility study. Eur Spine J 9(Suppl 1):65–70

    Article  Google Scholar 

  24. Gebhard FT, Kraus MD, Schneider E, Liener UC, Kinzl L, Arand M (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine (Phila Pa 1976) 31:2024–2027. doi:10.1097/01.brs.0000229250.69369.ac (discussion 2028)

    Article  Google Scholar 

  25. Beck M, Mittlmeier T, Gierer P, Harms C, Gradl G (2009) Benefit and accuracy of intraoperative 3D-imaging after pedicle screw placement: a prospective study in stabilizing thoracolumbar fractures. Eur Spine J 18:1469–1477. doi:10.1007/s00586-009-1050-5

    Article  PubMed  Google Scholar 

  26. Ito Y, Sugimoto Y, Tomioka M, Hasegawa Y, Nakago K, Yagata Y (2008) Clinical accuracy of 3D fluoroscopy-assisted cervical pedicle screw insertion. J Neurosurg Spine 9:450–453. doi:10.3171/SPI.2008.9.11.450

    Article  PubMed  Google Scholar 

  27. Sugimoto Y, Ito Y, Tomioka M, Shimokawa T, Shiozaki Y, Mazaki T, Tanaka M (2010) Vertebral rotation during pedicle screw insertion in patients with cervical injury. Acta Neurochir (Wien) 152:1343–1346. doi:10.1007/s00701-010-0665-y

    Article  Google Scholar 

Download references

Acknowledgments

No funds were received in support of this work. No benefits in any form have been or will be received form a commercial party related directly or indirectly to the subject of this manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, W., Weng, C., Liu, B. et al. Posterior fixation and fusion of unstable Hangman’s fracture by using intraoperative three-dimensional fluoroscopy-based navigation. Eur Spine J 21, 863–871 (2012). https://doi.org/10.1007/s00586-011-2085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-2085-y

Keywords

Navigation