Skip to main content

Advertisement

Log in

Development of a per-operative procedure for concentrated bone marrow adjunction in postero-lateral lumbar fusion

Radiological, biological and clinical assessment

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Addition of bone marrow to the bone graft in the postero-lateral lumbar arthrodesis is a widely used technique. Bone marrow brings stem cells and growth factors contained in the platelets, favorable for bone growth. Adjunction of concentrated bone marrow should create better conditions and may increase bone growth.

Methods

Simple blind randomized clinical, prospective, monocentric trial was conducted. Fifteen patients underwent lumbar arthrodesis. During surgery, a fraction of the bone marrow harvested was centrifuged. One side received this concentrate with autologous bone and ceramics; the other side received the same graft with unconcentrated bone marrow. A quantitative study, realised with a volume calculating software on CT-scan images, determined the cortical bone volume in the graft post-operatively and at 3 months. The osteoprogenitor cells, nucleated cells and platelet concentrations were determined.

Results

The biological study found an average concentration of six times for the nucleated cells, 3.5 times for the platelets and 2.2 times for the osteoprogenitor cells. The comparison of the mean cortical bone volumes post-operatively and at 3 months was not significantly different.

Conclusions

Despite the concentration obtained, there was no increase of bone growth by adding concentrated bone marrow. However, the number of stem cells in bone marrow was low and maybe a stronger concentration is needed to obtain a difference. The 3D reconstruction of the graft and the analysis of the graft’s volume using a novel software was efficient according to the similarity of the graft’s volume post-operatively in all patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boden SD (2002) Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 27(16 Suppl 1):S26–S31

    Article  PubMed  Google Scholar 

  2. Delecrin J, Takahashi S, Gouin F, Passuti N (2000) A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine 25(5):563–569

    Article  PubMed  CAS  Google Scholar 

  3. Laurie SW, Kaban LB, Mulliken JB, Murray JE (1984) Donor-site morbidity after harvesting rib and iliac bone. Plast Reconstr Surg 73(6):933–938

    Article  PubMed  CAS  Google Scholar 

  4. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3(3):192–195

    Article  PubMed  CAS  Google Scholar 

  5. Jorgenson SS, Lowe TG, France J, Sabin J (1994) A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine 19(18):2048–2053

    Article  PubMed  CAS  Google Scholar 

  6. O’Beirne J, O’Neill D, Gallagher J, Williams DH (1992) Spinal fusion for back pain: a clinical and radiological review. J Spinal Disord 5(1):32–38

    Article  PubMed  Google Scholar 

  7. Ransford AO, Morley T, Edgar MA, Webb P, Passuti N, Chopin D, Morin C, Michel F, Garin C, Pries D (1998) Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br 80(1):13–18

    Article  PubMed  CAS  Google Scholar 

  8. Lane JM, Yasko AW, Tomin E, Cole BJ, Waller S, Browne M, Turek T, Gross J (1999) Bone marrow and recombinant human bone morphogenetic protein-2 in osseous repair. Clin Orthop Relat Res 361:216–227

    Article  PubMed  Google Scholar 

  9. Mroz TE, Wang JC, Hashimoto R, Norvell DC (2010) Complications related to osteobiologics use in spine surgery: a systematic review. Spine (Phila Pa 1976) 35(9 Suppl):S86–S104

    Article  Google Scholar 

  10. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13(1):81–88

    Article  PubMed  CAS  Google Scholar 

  11. Connolly JF (1998) Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clin Orthop Relat Res 355(Suppl):S257–S266

    Article  PubMed  Google Scholar 

  12. Dalle Carbonare L, Innamorati G, Valenti MT (2011) Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev

  13. Tare RS, Babister JC, Kanczler J, Oreffo RO (2008) Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol Cell Endocrinol 288(1–2):11–21

    Google Scholar 

  14. Lowery GL, Kulkarni S, Pennisi AE (1999) Use of autologous growth factors in lumbar spinal fusion. Bone 25(2 Suppl):47S–50S

    Article  PubMed  CAS  Google Scholar 

  15. Slater M, Patava J, Kingham K, Mason RS (1995) Involvement of platelets in stimulating osteogenic activity. J Orthop Res 13(5):655–663

    Article  PubMed  CAS  Google Scholar 

  16. Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79(11):1699–1709

    PubMed  CAS  Google Scholar 

  17. Hernigou P, Beaujean F (1997) Pseudarthrosis treated by percutaneous autologous bone marrow graft. Rev Chir Orthop Reparatrice Appar Mot 83(6):495–504

    PubMed  CAS  Google Scholar 

  18. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88(Suppl 1 Pt 2):322–327

    PubMed  Google Scholar 

  19. Vogel JP, Szalay K, Geiger F, Kramer M, Richter W, Kasten P (2006) Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets 17(7):462–469

    Article  PubMed  CAS  Google Scholar 

  20. Kasten P, Vogel J, Luginbuhl R, Niemeyer P, Weiss S, Schneider S, Kramer M, Leo A, Richter W (2006) Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Cells Tissues Organs 183(2):68–79

    Article  PubMed  CAS  Google Scholar 

  21. Parsons P, Butcher A, Hesselden K, Ellis K, Maughan J, Milner R, Scott M, Alley C, Watson JT, Horner A (2008) Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. J Orthop Trauma 22(9):595–604

    Article  PubMed  Google Scholar 

  22. Pittenger MF (2008) Mesenchymal stem cells from adult bone marrow. Methods Mol Biol 449:27–44

    PubMed  CAS  Google Scholar 

  23. Wolfe M, Pochampally R, Swaney W, Reger RL (2008) Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Methods Mol Biol 449:3–25

    PubMed  Google Scholar 

  24. Aktas M, Radke TF, Strauer BE, Wernet P, Kogler G (2008) Separation of adult bone marrow mononuclear cells using the automated closed separation system Sepax. Cytotherapy 10(2):203–211

    Article  PubMed  CAS  Google Scholar 

  25. Hermann PC, Huber SL, Herrler T, von Hesler C, Andrassy J, Kevy SV, Jacobson MS, Heeschen C (2008) Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplant 16(10):1059–1069

    Article  PubMed  Google Scholar 

  26. Kant AP, Daum WJ, Dean SM, Uchida T (1995) Evaluation of lumbar spine fusion. Plain radiographs versus direct surgical exploration and observation. Spine 20(21):2313–2317

    Article  PubMed  CAS  Google Scholar 

  27. Blumenthal SL, Gill K (1993) Can lumbar spine radiographs accurately determine fusion in postoperative patients? Correlation of routine radiographs with a second surgical look at lumbar fusions. Spine 18(9):1186–1189

    Article  PubMed  CAS  Google Scholar 

  28. Hamill CL, Simmons ED Jr (1997) Interobserver variability in grading lumbar fusions. J Spinal Disord 10(5):387–390

    Article  PubMed  CAS  Google Scholar 

  29. Brodsky AE, Kovalsky ES, Khalil MA (1991) Correlation of radiologic assessment of lumbar spine fusions with surgical exploration. Spine 16(6 Suppl):S261–S265

    Article  PubMed  CAS  Google Scholar 

  30. Williams AL, Gornet MF, Burkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 26(8):2057–2066

    PubMed  Google Scholar 

  31. Moro-Barrero L, Acebal-Cortina G, Suarez-Suarez M, Perez-Redondo J, Murcia-Mazon A, Lopez-Muniz A (2007) Radiographic analysis of fusion mass using fresh autologous bone marrow with ceramic composites as an alternative to autologous bone graft. J Spinal Disord Tech 20(6):409–415

    Article  PubMed  Google Scholar 

  32. Christensen K, Vang S, Brady C, Isler J, Allen K, Anderson J, Holt D (2006) Autologous platelet gel: an in vitro analysis of platelet-rich plasma using multiple cycles. J Extra Corpor Technol 38(3):249–253

    PubMed  Google Scholar 

  33. Kasten P, Beyen I, Egermann M, Suda AJ, Moghaddam AA, Zimmermann G, Luginbuhl R (2008) Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur Cell Mater 16:47–55

    PubMed  CAS  Google Scholar 

  34. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374

    Article  PubMed  Google Scholar 

  35. Carreon LY, Glassman SD, Anekstein Y, Puno RM (2005) Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine (Phila Pa 1976) 30(9):E243–E246 discussion E247

    Article  Google Scholar 

  36. Weiner BK, Walker M (2003) Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine (Phila Pa 1976) 28(17):1968–1970 discussion 1971

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Odri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odri, G.A., Hami, A., Pomero, V. et al. Development of a per-operative procedure for concentrated bone marrow adjunction in postero-lateral lumbar fusion. Eur Spine J 21, 2665–2672 (2012). https://doi.org/10.1007/s00586-012-2375-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2375-z

Keywords

Navigation