Skip to main content
Log in

Biomechanical evaluation of a low profile, anchored cervical interbody spacer device in the setting of progressive flexion-distraction injury of the cervical spine

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Anterior cervical decompression and fusion is a well-established procedure for treatment of degenerative disc disease and cervical trauma including flexion-distraction injuries. Low-profile interbody devices incorporating fixation have been introduced to avoid potential issues associated with dissection and traditional instrumentation. While these devices have been assessed in traditional models, they have not been evaluated in the setting of traumatic spine injury. This study investigated the ability of these devices to stabilize the subaxial cervical spine in the presence of flexion-distraction injuries of increasing severity.

Methods

Thirteen human cadaveric subaxial cervical spines (C3–C7) were tested at C5–C6 in flexion–extension, lateral bending and axial rotation in the load-control mode under ±1.5 Nm moments. Six spines were tested with locked screw configuration and seven with variable angle screw configuration. After testing the range of motion (ROM) with implanted device, progressive posterior destabilization was performed in 3 stages at C5–C6.

Results

The anchored spacer device with locked screw configuration significantly reduced C5–C6 flexion–extension (FE) motion from 14.8 ± 4.2 to 3.9 ± 1.8°, lateral bending (LB) from 10.3 ± 2.0 to 1.6 ± 0.8, and axial rotation (AR) from 11.0 ± 2.4 to 2.5 ± 0.8 compared with intact under (p < 0.01). The anchored spacer device with variable angle screw configuration also significantly reduced C5–C6 FE motion from 10.7 ± 1.7 to 5.5 ± 2.5°, LB from 8.3 ± 1.4 to 2.7 ± 1.0, and AR from 8.8 ± 2.7 to 4.6 ± 1.3 compared with intact (p < 0.01). The ROM of the C5–C6 segment with locked screw configuration and grade-3 F-D injury was significantly reduced from intact, with residual motions of 5.1 ± 2.1 in FE, 2.0 ± 1.1 in LB, and 3.3 ± 1.4 in AR. Conversely, the ROM of the C5–C6 segment with variable-angle screw configuration and grade-3 F-D injury was not significantly reduced from intact, with residual motions of 8.7 ± 4.5 in FE, 5.0 ± 1.6 in LB, and 9.5 ± 4.6 in AR.

Conclusions

The locked screw spacer showed significantly reduced motion compared with the intact spine even in the setting of progressive flexion-distraction injury. The variable angle screw spacer did not sufficiently stabilize flexion–distraction injuries. The resulting motion for both constructs was higher than that reported in previous studies using traditional plating. Locked screw spacers may be utilized with additional external immobilization while variable angle screw spacers should not be used in patients with flexion-distraction injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robinson RA (1963) The problem of neck pain: its alleviation by anterior removal of intervertebral disc with interbody fusion in the cervical spine. J Med Assoc State Ala 33:1–14

    PubMed  CAS  Google Scholar 

  2. Smith GW, Robinson RA (1958) The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am 40-A(3):607–624

    PubMed  CAS  Google Scholar 

  3. Frempong-Boadu A, Houten JK, Osborn B, Opulencia J, Kells L, Guida DD, Le Roux PD (2002) Swallowing and speech dysfunction in patients undergoing anterior cervical discectomy and fusion: a prospective, objective preoperative and postoperative assessment. J Spinal Disord Tech 15(5):362–368

    Article  PubMed  Google Scholar 

  4. Lee MJ, Bazaz R, Furey CG, Yoo J (2005) Influence of anterior cervical plate design on dysphagia: a 2-year prospective longitudinal follow-up study. J Spinal Disord Tech 18(5):406–409. doi:10.1097/01.bsd.0000177211.44960.71

    Article  PubMed  Google Scholar 

  5. Scholz M, Reyes PM, Schleicher P, Sawa AG, Baek S, Kandziora F, Marciano FF, Crawford NR (2009) A new stand-alone cervical anterior interbody fusion device: biomechanical comparison with established anterior cervical fixation devices. Spine 34(2):156–160. doi:10.1097/BRS.0b013e31818ff9c4

    Article  PubMed  Google Scholar 

  6. Balaram AGA, O’Leary P, Voronov L, Havey R, Carandang G, Abjornson C, Patwardhan A (2009) Biomechanical evaluation of a low profile, anchored cervical interbody spacer device at the index level or adjacent to plated fusion. Paper presented at the Cervical Spine Research Society, Salt Lake City, 3–5 Dec, 2009

  7. Patwardhan AG, Havey RM, Ghanayem AJ, Diener H, Meade KP, Dunlap B, Hodges SD (2000) Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine 25(12):1548–1554

    Article  PubMed  CAS  Google Scholar 

  8. Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21(3):540–546. doi:10.1016/S0736-0266(02)00202-4

    Article  PubMed  Google Scholar 

  9. Allen BL Jr, Ferguson RL, Lehmann TR, O’Brien RP (1982) A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine 7(1):1–27

    Article  PubMed  Google Scholar 

  10. Vaccaro AR, Madigan L, Schweitzer ME, Flanders AE, Hilibrand AS, Albert TJ (2001) Magnetic resonance imaging analysis of soft tissue disruption after flexion-distraction injuries of the subaxial cervical spine. Spine 26(17):1866–1872

    Article  PubMed  CAS  Google Scholar 

  11. Paxinos O, Ghanayem AJ, Zindrick MR, Voronov LI, Havey RM, Carandang G, Hadjipavlou A, Patwardhan AG (2009) Anterior cervical discectomy and fusion with a locked plate and wedged graft effectively stabilizes flexion-distraction stage-3 injury in the lower cervical spine: a biomechanical study. Spine 34(1):E9–E15. doi:10.1097/BRS.0b013e318188386a

    Article  PubMed  Google Scholar 

  12. Kaiser MG, Haid Jr. RW, Subach BR, Barnes B, Rodts Jr. GE (2002) Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. Neurosurgery 50(2):229–236; discussion 236–238

  13. Song KJ, Taghavi CE, Hsu MS, Lee KB, Kim GH, Song JH (2010) Plate augmentation in anterior cervical discectomy and fusion with cage for degenerative cervical spinal disorders. Eur Spine J 19(10):1677–1683. doi:10.1007/s00586-010-1283-3

    Article  PubMed  Google Scholar 

  14. Lu DC, Theodore P, Korn WM, Chou D (2008) Esophageal erosion 9 years after anterior cervical plate implantation. Surg Neurol 69(3):310–312; discussion 312–313. doi:10.1016/j.surneu.2007.02.037

    Google Scholar 

  15. Winslow CP, Winslow TJ, Wax MK (2001) Dysphonia and dysphagia following the anterior approach to the cervical spine. Arch Otolaryngol Head Neck Surg 127(1):51–55

    PubMed  CAS  Google Scholar 

  16. Kuo YC, Levine MS (2010) Erosion of anterior cervical plate into pharynx with pharyngotracheal fistula. Dysphagia. doi:10.1007/s00455-009-9271-7

    PubMed  Google Scholar 

  17. Daniels AH, Riew KD, Yoo JU, Ching A, Birchard KR, Kranenburg AJ, Hart RA (2008) Adverse events associated with anterior cervical spine surgery. J Am Acad Orthop Surg 16(12):729–738

    PubMed  Google Scholar 

  18. Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4(6 Suppl):190S–194S. doi:10.1016/j.spinee.2004.07.007

    Article  PubMed  Google Scholar 

  19. Ishihara H, Kanamori M, Kawaguchi Y, Nakamura H, Kimura T (2004) Adjacent segment disease after anterior cervical interbody fusion. Spine J 4(6):624–628. doi:10.1016/j.spinee.2004.04.011

    Article  PubMed  Google Scholar 

  20. Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81(4):519–528

    PubMed  CAS  Google Scholar 

  21. Yang JY, Song HS, Lee M, Bohlman HH, Riew KD (2009) Adjacent level ossification development after anterior cervical fusion without plate fixation. Spine 34(1):30–33. doi:10.1097/BRS.0b013e318190d833

    Article  PubMed  CAS  Google Scholar 

  22. Park JB, Watthanaaphisit T, Riew KD (2007) Timing of development of adjacent-level ossification after anterior cervical arthrodesis with plates. Spine J 7(6):633–636. doi:10.1016/j.spinee.2006.10.021

    Article  PubMed  Google Scholar 

  23. Bozkus H, Ames CP, Chamberlain RH, Nottmeier EW, Sonntag VK, Papadopoulos SM, Crawford NR (2005) Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine. Spine 30(8):915–922. doi:10.1097/01.brs.0000158949.37281.d7

    Article  PubMed  Google Scholar 

  24. Do Koh Y, Lim TH, Won You J, Eck J, An HS (2001) A biomechanical comparison of modern anterior and posterior plate fixation of the cervical spine. Spine 26(1):15–21

    Article  PubMed  CAS  Google Scholar 

  25. Pitzen T, Lane C, Goertzen D, Dvorak M, Fisher C, Barbier D, Steudel WI, Oxland T (2003) Anterior cervical plate fixation: biomechanical effectiveness as a function of posterior element injury. J Neurosurg 99(1 Suppl):84–90

    PubMed  Google Scholar 

  26. Bohler J, Gaudernak T (1980) Anterior plate stabilization for fracture-dislocations of the lower cervical spine. J Trauma 20(3):203–205

    Article  PubMed  CAS  Google Scholar 

  27. Henriques T, Olerud C, Bergman A, Jonsson H Jr (2004) Distractive flexion injuries of the subaxial cervical spine treated with anterior plate alone. J Spinal Disord Tech 17(1):1–7. doi:10.1097/00024720-200402000-00002

    Article  PubMed  Google Scholar 

  28. Lambiris E, Zouboulis P, Tyllianakis M, Panagiotopoulos E (2003) Anterior surgery for unstable lower cervical spine injuries. Clin Orthop Relat Res 411:61–69. doi:10.1097/01.blo.0000068185.83581.cf

    Article  PubMed  Google Scholar 

  29. Razack N, Green BA, Levi AD (2000) The management of traumatic cervical bilateral facet fracture-dislocations with unicortical anterior plates. J Spinal Disord 13(5):374–381

    Article  PubMed  CAS  Google Scholar 

  30. Goffin J, Plets C, Van den Bergh R (1989) Anterior cervical fusion and osteosynthetic stabilization according to Caspar: a prospective study of 41 patients with fractures and/or dislocations of the cervical spine. Neurosurgery 25(6):865–871

    Article  PubMed  CAS  Google Scholar 

  31. Brodke DS, Anderson PA, Newell DW, Grady MS, Chapman JR (2003) Comparison of anterior and posterior approaches in cervical spinal cord injuries. J Spinal Disord Tech 16(3):229–235

    Article  PubMed  Google Scholar 

  32. Goffin J, van Loon J, Van Calenbergh F, Plets C (1995) Long-term results after anterior cervical fusion and osteosynthetic stabilization for fractures and/or dislocations of the cervical spine. J Spinal Disord 8(6):500–508; discussion 499

    Google Scholar 

  33. Woodworth RS, Molinari WJ, Brandenstein D, Gruhn W, Molinari RW (2009) Anterior cervical discectomy and fusion with structural allograft and plates for the treatment of unstable posterior cervical spine injuries. J Neurosurg Spine 10(2):93–101. doi:10.3171/2008.11.SPI08615

    Article  PubMed  Google Scholar 

  34. Garvey TA, Eismont FJ, Roberti LJ (1992) Anterior decompression, structural bone grafting, and caspar plate stabilization for unstable cervical spine fractures and/or dislocations. Spine 17(10 Suppl):S431–S435

    Article  PubMed  CAS  Google Scholar 

  35. Mourning D, Reitman CA, Heggeness MH, Esses SI, Hipp JA (2007) Initial intervertebral stability after anterior cervical discectomy and fusion with plating. Spine J 7(6):643–646. doi:10.1016/j.spinee.2006.10.024

    Article  PubMed  Google Scholar 

  36. Fielding JW (1988) The status of arthrodesis of the cervical spine. J Bone Joint Surg Am 70(10):1571–1574

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Department of Veterans Affairs, Washington, DC, USA and Synthes Spine, Inc., West Chester, PA, USA.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash G. Patwardhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojewnik, B., Ghanayem, A.J., Tsitsopoulos, P.P. et al. Biomechanical evaluation of a low profile, anchored cervical interbody spacer device in the setting of progressive flexion-distraction injury of the cervical spine. Eur Spine J 22, 135–141 (2013). https://doi.org/10.1007/s00586-012-2446-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2446-1

Keywords

Navigation