Skip to main content

Advertisement

Log in

Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage positioned between the vertebral endplate and nucleus pulposus (NP) that functions both as a mechanical barrier and as a gateway for nutrient transport into the disc. Despite its critical role in disc nutrition and degeneration, the morphology of the CEP has not been well characterized. The objective of this study was to visualize and report observations of the CEP three-dimensional morphology, and quantify CEP thickness using an MRI FLASH (fast low-angle shot) pulse sequence.

Methods

MR imaging of ex vivo human cadaveric lumbar spine segments (N = 17) was performed in a 7T MRI scanner with sequence parameters that were selected by utilizing high-resolution T1 mapping, and an analytical MRI signal model to optimize image contrast between CEP and NP. The CEP thickness at five locations along the mid-sagittal AP direction (center, 5 mm, 10 mm off-center towards anterior and posterior) was measured, and analyzed using two-way ANOVA and a post hoc Bonferonni test. For further investigation, six in vivo volunteers were imaged with a similar sequence in a 3T MRI scanner. In addition, decalcified and undecalcified histology was performed, which confirmed that the FLASH sequence successfully detected the CEP.

Results

CEP thickness determined by MRI in the mid-sagittal plane across all lumbar disc levels and locations was 0.77 ± 0.24 mm ex vivo. The CEP thickness was not different across disc levels, but was thinner toward the center of the disc.

Conclusions

This study demonstrates the potential of MRI FLASH imaging for structural quantification of the CEP geometry, which may be developed as a technique to evaluate changes in the CEP with disc degeneration in future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12:S97–103

    Article  PubMed  Google Scholar 

  2. Adams MA, Dolan P (2005) Spine biomechanics. J Biomech 38:1972–1983

    Article  PubMed  Google Scholar 

  3. Louma K, Riihimaki H, Luukkonen R et al (2000) Low back pain in relation to lumbar disc degeneration. Spine 24:487–492

    Article  Google Scholar 

  4. Peng B, Hou S, Wu W et al (2006) The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J 15:583–587

    Article  PubMed  Google Scholar 

  5. Videman T, Nurminen M (2004) The occurrence of annular tears and their relation to lifetime back pain history: a cadaveric study using barium sulfate discography. Spine 29:2668–2676

    Article  PubMed  Google Scholar 

  6. Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice 8:18–44

    Article  PubMed  Google Scholar 

  7. Roberts S, Menage J, Urban JPG (1989) Biomechanical and structural properties of the catilage end-plate and its relation to the intervertebral disc. Spine 14:166–174

    Article  PubMed  CAS  Google Scholar 

  8. Francois RJ, Bywaters EGL, Aufdermaur M (1985) Illustrated glossary for spinal anatomy. Rheumatol Int 5:241–245

    Article  PubMed  CAS  Google Scholar 

  9. Crock HV, Goldwasser M (1984) Anatomic studies of the circulation in the region of the vertebral end-plate in adult greyhound dogs. Spine 9:702–706

    Article  PubMed  CAS  Google Scholar 

  10. Roberts S, Menage J, Einstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Ortho Res 11:747–757

    Article  CAS  Google Scholar 

  11. Moore RJ (2000) The vertebral end-plate: what do we know? Eur Spine J 9:92–96

    Article  PubMed  CAS  Google Scholar 

  12. Urban JPG, Roberts S (2003) Degeneration of the intervertebral disc. Arthr Res Therapy 5:120–130

    Article  Google Scholar 

  13. Grignon B, Grignon Y, Mainard D et al (2000) The structure of the cartilaginous end-plates in elder people. Surg Radiol Anat 22:13–19

    Article  PubMed  CAS  Google Scholar 

  14. Bibby SRS, Jones DA, Lee RB et al (2001) The pathophysiology of the intervertebral disc. Joint Bone Spine 68:537–542

    Article  PubMed  CAS  Google Scholar 

  15. Nachemson A, Lewin T, Maroudas A et al (1970) In vitro diffusion of dye through the end-plates and annulus fibrosus of human lumbar intervertebral discs. Acta Orthop Scand 41:589–607

    Article  PubMed  CAS  Google Scholar 

  16. Roberts S, Urban JPG, Evans H et al (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21:415–420

    Article  PubMed  CAS  Google Scholar 

  17. Accadbled F, Laffosse J-M, Ambard D et al (2008) Influence of location, fluid flow direction, and tissue maturity on the macroscopic permeability of cerebral end plates. Spine 33:612–619

    Article  PubMed  Google Scholar 

  18. Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102

    Article  PubMed  CAS  Google Scholar 

  19. Benneker LM, Heini PF, Alini M et al (2005) Vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30:167–173

    Article  PubMed  Google Scholar 

  20. Martin MD, Boxell CM (2002) Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus 13:1–6

    Article  Google Scholar 

  21. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161

    Article  PubMed  Google Scholar 

  22. Ariga K, Miyamoto S, Nakase T et al (2001) The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 26:2414–2420

    Article  PubMed  CAS  Google Scholar 

  23. Lyons G, Einstein SM, Sweet MBE (1981) Biochemical changes in intervertebral disc degeneration. Biochimica et Biophys Acta 673:443–453

    Article  CAS  Google Scholar 

  24. Antoniu J, Mwale F, Demers CN et al (2006) Quantitative magnetic resonance imaging of enzymatically induced degeneration of the nucleus pulposus of intervertebral discs. Spine 31:1547–1554

    Article  Google Scholar 

  25. Pfirrmann CWA, Metzdorf A, Elfering A et al (2006) Effect of aging and degeneration on disc volume and shape: a quantitative study in asymptomatic volunteers. J Ortho Res 24:1086–1094

    Article  Google Scholar 

  26. Johannessen W, Auerbach JD, Wheaton AJ et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 31:1253–1257

    Article  PubMed  Google Scholar 

  27. Blumenkrantz G, Zuo J, Li X et al (2010) In vivo 3.0-Tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 63:1193–1200

    Article  PubMed  Google Scholar 

  28. Haase A, Frahm J, Matthaei D et al (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. JMR 67(2):258–266

    CAS  Google Scholar 

  29. Gatehouse PD, He T, Hughes SPF et al (2004) MR imaging of degenerative disc disease in the lumbar spine with ultrashort TE pulse sequences. MAGMA 16:160–166

    Article  PubMed  Google Scholar 

  30. Dathe H, Helms G (2010) Exact algebraization of the signal equation of spoiled gradient echo MRI. Phys Med Biol 55:4231–4245

    Article  PubMed  Google Scholar 

  31. Helms G, Dathe H, Dechent P (2008) Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn Reson Med 59:667–672

    Article  PubMed  Google Scholar 

  32. Iatridis JC, Setton LA, Weidenbaum M et al (1997) The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J Biomech 30(10):1005–1013

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez AG, Slichter CK, Acosta FL et al (2011) Human disc nucleus properties and vertebral endplate permeability. Spine 36(7):512–520

    Article  PubMed  Google Scholar 

  34. O’Connell GD, Vresilovic EJ, Elliott DM (2011) Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration. J Orthop Res 29(4):547–555

    Article  PubMed  Google Scholar 

  35. Wright AC, Lemdiasov R, Connick TJ et al (2011) Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7T. J Magn Reson 210:113–122

    Article  PubMed  CAS  Google Scholar 

  36. Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digital Imaging 17:205–216

    Article  Google Scholar 

  37. Bae WC, Statum S, Zhang Z et al (2013) Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 266(2):564–574

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grants RC1 AR058450 and R01 AR050052.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn M. Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, S.M., Yoder, J.H., Wright, A.C. et al. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J 22, 1820–1828 (2013). https://doi.org/10.1007/s00586-013-2798-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-2798-1

Keywords

Navigation