Skip to main content

Advertisement

Log in

The potential role of heat shock proteins in acute spinal cord injury

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

An Erratum to this article was published on 23 April 2014

Abstract

Purpose

This study aims to investigate the differential expression proteins profile of spinal cord tissues after acute spinal cord injury (ASCI), provide preliminary results for further study and explore the secondary injury mechanisms underlying ASCI.

Methods

Using Allen’s frame to establish ASCI model of Sprague–Dawley rats, then a stable isotope-labelled strategy using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional (2D) liquid chromatography tandem mass spectrometry (2D LC–MS/MS) was performed to separate and identify differentially expressed proteins.

Results

A total of 220 differentially expressed proteins were identified in the spinal cord tissues of H-8 group (acute spinal cord injury after 8 h) compared with H-0 group (acute spinal cord injury after 0 h); Up to 116 proteins were up-regulated, whereas 104 proteins were down-regulated in the spinal cord tissues. Three of the differentially expressed Heat shock proteins (HSPs) namely, Hsp90ab1, Hspa4 and Hspe1 were down-regulated.

Conclusion

The differentially expressed proteins of spinal cord tissues after ASCI will provide scientific foundation for further study to explore the secondary injury mechanism of ASCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hagg T, Oudega M (2006) Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 23:264–280

    PubMed  Google Scholar 

  2. McBride CB, McPhail LT, Vanderluit JL et al (2003) Caspase inhibition attenuates transection-induced oligodendrocyte apoptosis in the developing chick spinal cord. Mol Cell Neurosci 23:383–397

    Article  CAS  PubMed  Google Scholar 

  3. Whalley K, O’Neill P, Ferretti P (2006) Changes in response to spinal cord injury with development: vascularization, haemorrhage and apoptosis. Neuroscience 137:821–832

    Article  CAS  PubMed  Google Scholar 

  4. Carmel JB, Galante A, Soteropoulos P et al (2001) Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics 7:201–213

    CAS  PubMed  Google Scholar 

  5. Morange M (2005) What history tells us II. The discovery of chaperone function. J Biosci 30:461–464

    Article  CAS  PubMed  Google Scholar 

  6. Campisi J, Fleshner M (2003) Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J Appl Physiol 94:43–52

    CAS  PubMed  Google Scholar 

  7. Robinson MB, Tidwell JL, Gould T et al (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735–9745

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Voegeli TS, Liu PP et al (2007) Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm Allergy Drug Targets 6:91–100

    Article  CAS  PubMed  Google Scholar 

  9. Sangala JR, Frankla MR, Paul P (2008) The role of heat shock proteins in spinal cord injury. Neurosurg Focus 25(5):E4

    Article  Google Scholar 

  10. Yan W, Chen SS (2005) Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic 4:27–38

    Article  CAS  PubMed  Google Scholar 

  11. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using aminereactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  12. Wu WW, Wang G, Baek SJ et al (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF. J Proteome Res 5:651–658

    Article  CAS  PubMed  Google Scholar 

  13. Shadforth IP, Dunkley TP, Lilley KS et al (2005) i-Tracker: for quantitative proteomics using iTRAQ[J]. BMC Genomics 6:145

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ernoult E, Gamelin E, Guette C (2008) Improved proteome coverage by using iTRAQ labelling and peptide OFFGEL fractionation. Proteome Sci 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  15. Molloy MP (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 280:1–10

    Article  CAS  PubMed  Google Scholar 

  16. Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30 Supp l:S174–S180

    Article  Google Scholar 

  17. Choo AM, Liu J, Liu Z et al (2009) Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations. J Neurosci Methods 181:6–17

    Article  PubMed  Google Scholar 

  18. Byrnes KR, Stoica B, Riccio A et al (2009) Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Ann Neurol 66(1):63–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  20. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  21. Awad H, Suntres Z, Heijmans J et al (2008) Intracellular and extracellular expression of the major inducible 70 kDa heat shock protein in experi-mental ischemia-reperfusion injury of the spinal cord[J]. Exp Neurol 212:275–284

    Article  CAS  PubMed  Google Scholar 

  22. Kennaway CK, Benesch JL, Gohlke U et al (2005) Dodecameric structure of the small heat shock protein Acr1 from Mycobacterium tuberculosis. J Biol Chem 280:33419–33425

    Article  CAS  PubMed  Google Scholar 

  23. Kumar R, Pavithra SR, Tatu U (2007) Three-dimensional structure of heat shock protein 90 from Plasmodium falciparum: molecular modelling approach to rational drug design against malaria. J Biosci 32:531–536

    Article  PubMed  Google Scholar 

  24. Guzman-Lenis MS, Vallejo C, Navarro X et al (2008) Analysis of FK506-mediated protection in an organotypic model of spinal cord damage: heat shock protein 70 levels are modulated in microglial cells. Neuroscience 155:104–113

    Article  CAS  PubMed  Google Scholar 

  25. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26

    Article  CAS  PubMed  Google Scholar 

  26. Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290

    Article  CAS  PubMed  Google Scholar 

  27. Conroy SE, Latchman DS (1996) Do heat shock proteins have a role in breast cancer? Br J Cancer 74:717–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chopp M, Chen H, Ho KL et al (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology 39:1396–1398

    Article  CAS  PubMed  Google Scholar 

  29. Cid C et al (2004) Antibodies reactive to heat shock protein 90 induce oligodendrocyte precursor cell death in culture. Implications for demyelination in multiple sclerosis. FASEB J 18:409–411

    CAS  PubMed  Google Scholar 

  30. Cid C, Alvarez-Cermeno JC et al (2005) Anti-heat shock protein 90β antibodies decrease preoligodendrocyte population in perinatal and adult cell cultures. Implications for remyelination in multiple sclerosis. J Neurochem 95:349–360

    Article  CAS  PubMed  Google Scholar 

  31. Bergamaschini L, Cicardi M (2003) Recent advances in the use of C1 inhibitor as a therapeutic agent. Mol Immunol 40:155–158

    Article  CAS  PubMed  Google Scholar 

  32. Brown IR, Rush S, Ivy GO (1989) Induction of a heat shock gene at the site of tissue injury in the rat brain. Neuron 2:1559–1564

    Article  CAS  PubMed  Google Scholar 

  33. Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  34. Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats. J Comp Neurol 377:443–464

    Article  CAS  PubMed  Google Scholar 

  35. Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    Article  CAS  PubMed  Google Scholar 

  36. Chopp M, Chen H, Ho KL et al (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology 39:1396–1398

    Article  CAS  PubMed  Google Scholar 

  37. Kawagoe J, Abe K, Sato S et al (1992) Distributions of heat shock protein-70 mRNAs and heat shock cognate protein-70 mRNAs after transient global ischemia in gerbil brain. J Cereb Blood Flow Metab 2:794–801

    Article  Google Scholar 

  38. Plumier JC, Krueger AM, Currie RW et al (1997) Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 2:162–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hartman DJ, Hoogenraad NJ, Condron R et al (1992) Identification of a mammalian 10-kDa heat shock protein, a mitochondrial chaperonin 10 homologue essential for assisted folding of trimeric ornithine transcarbamoylase in vitro. Proc Natl Acad Sci USA 89:3394–3398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rospert S, Glick BS, Jeno P et al (1993) Identification and functional analysis of chaperonin 10, the groES homolog from yeast mitochondria. Proc Natl Acad Sci USA 90:10967–10971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Czarnecka AM, Campanella C, Zummo G et al (2006) Heat shock protein 10 and signal transduction: a “capsula eburnean” of carcinogenesis? Cell Stress Chaperones 11:287–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  PubMed  Google Scholar 

  43. Richardson A, Landry SJ, Georgopoulos C (1998) The ins and outs of a molecular chaperone machine. Trends Biochem Sci 23:138–143

    Article  CAS  PubMed  Google Scholar 

  44. Barazi HO, Zhou L, Templeton NS et al (2002) Identification of heat shock protein 60 as a molecular mediator of alpha 3 beta 1 integrin activation. Cancer Res 62:1541–1548

    CAS  PubMed  Google Scholar 

  45. Shin BK, Wang H, Yim AM et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  CAS  PubMed  Google Scholar 

  46. Kloetzel PM, Ossendorp F (2004) Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16(1):76–81

    Article  CAS  PubMed  Google Scholar 

  47. Kerlero de Rosbo N, Milo R, Lees MB et al (1993) Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 92(6):2602–2608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Sun J, Link H, Olsson T et al (1991) T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 146(5):1490–1495

    CAS  PubMed  Google Scholar 

  49. Zhang Y, Burger D, Saruhan G et al (1993) The T-lymphocyte response against myelinassociated glycoprotein and myelin basic protein in patients with multiple sclerosis. Neurology 43(2):403–407

    Article  CAS  PubMed  Google Scholar 

  50. Jain MR, Li Q, Liu T et al (2012) Proteomic identification of immunoproteasome accumulation in formalin-fixed rodent spinal cords with experimental autoimmune encephalomyelitis. J Proteome Res 11(3):1791–1803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Tsuchida T, Parker KC, Turner RV et al (1994) Autoreactive CD8+ T-cell responses to human myelin protein-derived peptides. Proc Natl Acad Sci USA 91(23):10859–10863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ito Y, Sugimoto Y, Tomioka M et al (2009) Does high dose methylprednisolone sodium succinate really improve neurological status in patient with acute cervical cord injury?: a prospective study about neurological recovery and early complications. Spine 34(20):2121–2124

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Song.

Additional information

Y. Zhou and L. Xu contributed equally to this paper and are also co-first authors for this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Xu, L., Song, X. et al. The potential role of heat shock proteins in acute spinal cord injury. Eur Spine J 23, 1480–1490 (2014). https://doi.org/10.1007/s00586-014-3214-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3214-1

Keywords

Navigation